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NOTATION INDEX 

 i 

3-HPA: 3-hydroxypropionaldehyde 

4,8-DiMeIQx: 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline 

7,8-DiMeIQx: 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline 

7-OH-IQ: 2-amino-3,6-dihydro-3-methyl-7H-imidazo[4,5-f]quinoline-7-one 

AIAs: aminoimidazo-azaarenes 

AOs: antioxidative agents 

AαC:  2-amino-9H-pyrido[2,3-b]indole 

BHA: butylated hydroxyanisole 

BHT: butylated hydroxytoluene 

CE: capillary electrophoresis 

CFU: colony forming units 

CYP: cytochrome P450 enzyme 

DAD: diode array detection 

DAPI: 4’,6-diamidino-2-phenylindole 

DEPT: distortionless enhancement by polarization transfer 

DGGE: denaturing gradient gel electrophoresis 

DiMeIQx: 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline  
DMEM: Dulbecco’s modified Eagle’s medium 

DMSO: dimethyl sulfoxide 

DNA: deoxyribonucleic acid 

DNPH: 2,4-dinitrophenyl hydrazine 

ED: electrochemical detector 

EDTA: ethylenediamine tetraacetic acid 

ELISA: enzyme-linked immuno sorbent assay 

ESI: electrospray ionization 

FACS: fluorescence-activated cell sorting 

FAFLP: fluorescent amplified fragment length polymorphism 

FBS: fetal bovine serum 

FOS: fructooligosaccharides 

GC: gas chromatography 

gCOSY: gradient enhanced correlation spectroscopy 

GF: germ-free 

gHMBC: gradient enhanced heteronuclear multiple bond correlation 
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gHSQC: gradient enhanced heteronuclear single quantum correlation 

GIP: glucose-dependent insulinotropic polypeptide  

GLP-1: glucagon-like peptide-1  

GOS: galactooligosaccharides 

GST: gluthatione S-transferase 

gTOCSY: gradient enhanced total correlation spectroscopy 

HCA: heterocyclic aromatic amine 

HFA: human fecal microbiota-associated 

HPA: 3-hydroxypropionaldehyde and aqueous derivates 

HPLC: high-performance liquid chromatography 

IARC: International Agency for Research on Cancer 

IBD: inflammatory bowel disease 

IC30: 30% inhibition concentration 

IC50: 50% inhibition concentration 

IFP: 2-amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine 

IQ: 2-amino-3-methylimidazo[4,5-f]quinoline 

IQx: 2-amino-3-methylimidazo[4,5-f]quinoxaline 

LAB: lactic acid bacteria 

LC-MS/MS: liquid chromatography coupled with tandem mass spectrometry 

LC-MS: liquid chromatography coupled with mass spectrometry 

LDH: lactate dehydrogenase 

LMW: low molecular weight 

LOD: limit of detection 

LOQ: limit of quantification 

m/z: mass to charge ratio 

MDR: multiple drug resistance 

MeAαC: 2-amino-3-methyl-9H-pyrido[2,3-b]indole 

MeIQ: 2-amino-3,4-dimethylimidazo[4,5-f]quinoline 

MeIQx: 2-amino-3,4-dimethylimidazo[4,5-f]quinoxaline 

MMS: methyl methanesulfonate 

MS: mass spectrometry 

MTT: methyl tetrazolium 

NAT: N-acetyl transferase 
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NHL: non-Hodgkin’s lymphoma 

OTM: olive tail moment 

PAH: polycyclic aromatic hydrocarbons 

PBS: phosphate buffered saline 

PCR: polymerase chain reaction 

PFG: pulsed field gradient 

PG: propyl gallate 

PhIP: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine 

PhIP-M1: 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-

a]pyrimidin-5-ium chloride 

PI: propidium iodide 

PPD: 1,3-propanediol 

PUFA: polyunsaturated fatty acids 

RNA: ribonucleic acid 

rRNA: ribosomal ribonucleic acid 

SCFA: short chain fatty acid 

SCGE: single cell gel electophoresis 

SD: standard deviation 

SDS: sodium dodecyl sulphate  

SE: standard error 

SHIME: Simulator of the Human Intestinal Microbial Ecosystem 

SPE: solid phase extraction 

SRB: sulforhodamine B 

SULT: sulfotransferase 

TBE: trypan blue exclusion 

TD50: 50% tumorigenic dose  

THBQ: tert-butylhydroquinone 

TMS: tetramethylsilane 

Trp-P-1: 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole 

Trp-P-2: 3-amino-1-methyl-5H-pyrido[4,3-b]indole 

UDPGT: UDP-glucuronosyl transferase 

UTP: U.S. National Toxicology Program 

UV-VIS: ultraviolet-visible
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CHAPTER 1CHAPTER 1   
 

Literature review: How cooked meat consumption may increase 

the risk for cancer? 

 

1. Diet and cancer: assessing the risk 

1.1. The global burden of cancer 

Cancer afflicts all communities. Worldwide, the burden of this disease impinges of the 

lives of tens of millions annually. Based on the most recent incidence and mortality data 

available, there were 10.1 million new cases, 6.2 million deaths and 22.4 million persons 

living with cancer in the year 2000 (Ferlay et al., 2001) (Figure 1.1). This represents an 

increase of around 19% in incidence and 18% in mortality since 1990.  

 

 
Figure 1.1   Mortality rates in men for all cancer sites combined (after: Ferlay et al., 2001). 
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Taking in account of the growth and ageing of the world’s population, based on various 

assumptions regarding trends in cancer risk, by 2030 it could be expected that there will be 20 

to 25 million incident cases of cancer and 13 to 16 million cancer deaths annually (IARC, 

2007). 

 

In terms of incidence, the most common cancers worldwide are lung (12.3% of all 

cancers), breast (10.4%) and colorectal (9.4%) cancers. In terms of mortality, however, the 

ranking is as follows: cancers of the lung (17.8% of all cancer deaths), stomach (10.4%) and 

liver (8.8%). The burden of cancer is distributed unequally between the developing and the 

developed world, with particular cancer types exhibiting different patterns of distribution 

(Figure 1.2 and 1.3). 

 

 
Figure 1.2  Comparison of the most common cancers for males in more and less 

developed countries in 2000. NHL = Non-Hodgkin lymphoma. (after: Ferlay et 

al., 2001). 
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Figure 1.3 Comparison of the most common cancers for females in more and less 

developed countries in 2000. NHL = Non-Hodgkin lymphoma. (after: Ferlay et 

al., 2001). 

 

The most conspicuous feature of the distribution of cancer between the sexes is the male 

predominance of lung cancer. Stomach, esophageal and bladder cancer are also much more 

common in males. For other tumor types, including cancers of the colorectum and pancreas, 

there is little difference between the sexes.  

 

1.2. Early interpretations 

In 337 BC, the father of modern medicine, Hippocrates, stated, ‘Let food be your 

medicine and medicine be your food’. Yong-He Yan, living in the Song Dynasty (960 - 1279 

ad), thought that poor nutrition was a cause of the condition we would now know as cancer of 

the esophagus. Wiseman (1676) suggested that cancer might arise from ‘an error in Diet, a 

great acrimony in the meats and drinks meeting with a fault in the first Concoction’ 

(digestion) and he advised abstention from ‘salt, sharp and gross meats’. Howard (1811) 
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proposed that constipation was an important factor in cancer, based on his 40 years of clinical 

practice. Lambe (1815), warned in his treatise on diet, cancer and other chronic diseases, 

against the danger of excess consumption of food in general, and meat in particular. Bennett 

(1849), author of medical textbooks, wrote that ‘the circumstances which diminish obesity 

and a tendency to the formation of fat, would seem, a priori, to be opposed to the cancerous 

tendency’. 

 

By the early twentieth century, similar views were commonplace. Williams (1908), 

concluded that ‘probably no single factor is more potent in determining the outbreak of cancer 

in the predisposed, than excessive feeding’ and proposed that ‘many indications point to the 

gluttonous consumption of proteins - especially meat - which is such a characteristic feature 

of the age, as likely to be specifically harmful in this respect’. He also identified ‘deficient 

exercise and probably lack of sufficient vegetable food’. During the first half of the twentieth 

century, two influential hypotheses on the causes of cancer were developed. The first focused 

on occupational causes, notably exposure of workers to carcinogenic agents (Hueper, 1942). 

The second general theory focused on diet. The medical statistician and epidemiologist, 

Frederick Hoffman, a founder of the American Cancer Society (ACS) and the US National 

Cancer Surveys, undertook a systematic review of the then current literature on diet and 

cancer (Hoffman, 1937). He concluded that ‘excessive nutrition if not the chief cause is at 

least a contributory factor of the first importance’. He identified fatty, sugary foods, white 

bread and meat as possible risk factors. 

 
In the second half of the twentieth century, theories of the dietary origins of cancer 

tended to be increasingly discounted, in favor of alternative theories that cancer is either the 

result of random genetic error, exposure to viruses or exposure to specific chemical 

carcinogens. Laboratory research began to concentrate on the investigation of cellular and, 

ultimately, molecular carcinogenesis, as well as on the effectiveness of surgery, radiotherapy 

and chemotherapy, as cancer treatments. The index of the fifth edition of the standard 

textbook Human Nutrition and Dietetics (Davidson et al., 1972) included no reference to diet 

and cancer and its text included only cursory reference to evidence that cancers of some sites 

may have some relationship with diet. 
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However, rates of incidence and death from various cancers continued to rise in 

industrialized countries (compare, for instance, Park, 1899 and Parkin et al., 1988) and 

epidemiological investigation indicated that this trend was not just a function of ageing. 

Further, studies of variations in cancer incidence from country to country and in successive 

generations of people who migrated from one part of the world to another, strongly suggested 

that cancers are largely environmental in origin. In the second half of the twentieth century, a 

new body of experimental and epidemiological work (Doll, 1967) began to indicate that diet 

was indeed a major environmental factor affecting the incidence of cancers of a number of 

sites. 

 

1.3. Emerging consensus 

Interest in nutritional causes of cancer began to revive in the 1970s, at first in the USA. 

This was partly because overall cancer rates remained obstinately high while costs of 

treatment accelerated; partly because of the new evidence on diet and cancer; and partly 

because ‘winning the war against cancer’ was perceived as a national goal equivalent in 

importance to the earlier achievement of putting a man on the moon (Proctor, 1994). 

 

A review by Wynder and Gori (1977) proposed that, for both men and women, the 

‘preventive potential’ for all cancers was 80 - 90% and that diet accounted for 40% of all 

male cancers and 60% of all female cancers. It was suggested that key dietary causes of 

cancer, in general, included overeating, fat and meat. The fact that incidence of stomach 

cancer varies inversely with the incidence of breast and of colon cancer was interpreted as 

suggesting that high-fat, low-carbohydrate diets might protect against stomach cancer. 

 

By the mid-1970s, descriptive, ecological and analytical epidemiological studies were 

providing a growing body of evidence on links between diet and cancer. Doll and Peto’s 

review (1981), which helped to reset the agenda for thinking on food, nutrition and cancer, 

included estimates of the extent to which cancer in general and specific cancers, can be 

avoided by changes in diet. Doll and Peto concluded that environmental carcinogens, other 

than those in tobacco and diet, are relatively unimportant causes of cancer. This conclusion 

was based partly on ecological data, which showed no coherent pattern (across various 

countries and regions) between cancer trends and the degree of external pollution.  
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The report anticipated that results of further research ‘may well be’ as follows: ‘Diet 

will be shown to be a factor in determining the occurrence of a high proportion of all cancers 

of the stomach and large bowel as well as of the body of the uterus (endometrium), gall 

bladder and (in tropical countries) of the liver’. ‘Diet may also prove to have a material effect 

on the incidence of cancers of the breast and pancreas and, perhaps through the anti-

carcinogenic effects of various micronutrients, on the incidence of cancers in many other 

tissues’. ‘If this is so, it may be possible to reduce cancer death rates by practicable dietary 

means by as much as 35% (for specific sites their estimates were: stomach and large bowel, 

90%; endometrium, gallbladder, pancreas and breast, 50%; lung, larynx, bladder, cervix, 

mouth, pharynx and esophagus, 20%; other types of cancer, 10%)’.  

 

Aspects of diet mentioned in Doll and Peto’s report as possibly protective against 

cancer included antioxidant vitamins, vegetables, such as carrots and leafy greens that are rich 

in these compounds and bioactive microconstituents such as indoles and protease inhibitors. 

Fiber, or rather foods that make feces bulky, were also cited as important. Aspects of diet 

mentioned as possible causes of cancer were overconsumption (cancers of the uterus and 

gallbladder in women), fat (cancers of the breast, colon and rectum) and meat (cancers of the 

colon and rectum). Those considered to be relatively unimportant causes of cancer were food 

additives (including colors and sweeteners), contaminants (apart from aflatoxin in relation to 

liver cancer) and methods of food preparation and storage that create carcinogens. 

 

Over the past 20 years, many epidemiological studies, particularly case-control studies 

and, more recently, large cohort studies, have investigated the role of habitual diet in relation 

to the risk of developing different cancers. The most consistent finding on diet as a 

determinant of cancer risk is the association between consumption of vegetables and fruit and 

the reduced risk of cancers of the pharynx, larynx, lung, esophagus, stomach and cervix uteri, 

while only vegetables, but not fruit, seem to protect against cancers of the colon and rectum. 

During the last 30 years over 250 epidemiological studies have been conducted around the 

world and about 80% of these found a significant protective effect of overall consumption of 

vegetable and/or fruit (WCRF, 1997). 

 

The recent body of evidence has also reduced the importance of specific nutrients, for 

example, fat, in favor of foods, for example, meat. Epidemiological studies on meat 
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consumption and cancer risk support the existence of a specific association with colorectal, 

pancreatic, breast and prostate cancer risk (Norrish et al., 1999; Anderson et al., 2002; Dai et 

al., 2002; Norat et al., 2005; Larsson and Wolk, 2006). This association is however more 

consistent for red meat (beef, lamb and pork) and processed meat (ham, salami, bacon and 

other charcuterie) (Norat et al., 2005).  

 

1.4. Meat and human cancer 

Several hypotheses have been developed to explain the association between colorectal 

cancer risk and meat. The fat content of meat could influence colon cancer risk by increasing 

excretion of bile acids, whose products may act as tumor promotors (Reddy, 1981). Other 

products of fat digestion, such as diacylglycerides, could selectively induce mitogenesis of 

adenomas and some carcinoma cells. The meat fat-hypothesis is consistent with the finding 

that lean beef did not promote colon carcinogenesis in rats and that high consumption of beef 

could increase the concentration of secondary fecal bile acids. Nevertheless, epidemiological 

studies have failed to show a consistent relationship between fat intake and colorectal cancer 

(Norat et al., 2002).  

 

Another mechanism that could explain this association is increased colonic protein 

metabolism due to increased protein intake from high meat diets (Blaut and Clavel, 2007). 

Products of colonic protein degradation and metabolism include ammonia, phenols, indoles 

and amines which have been shown to exert toxic effects in vitro and in animal models. There 

is, however, very limited evidence that protein per se increases colorectal cancer risk and 

some epidemiological studies have even reported a protective association between dietary 

protein and colon cancer.  

 

Red meat has a higher iron content than white meat. Dietary iron enhances lipid 

peroxidation in the mouse colon and augments dimethylhydrazine-induced colorectal tumors 

in mice and rats but the results of epidemiological studies are still insufficient (Norat et al., 

2002).  

 

Red meat intake also enhances the production of endogenous promoters and possible 

carcinogens such as N-nitroso compounds, which have been shown to induce the formation of 

DNA adducts in human colonocytes (Bingham et al., 1996). The same effect has not been 
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observed with white meat. N-nitroso compounds are also formed endogenously because the 

amines and amides produced primarily by bacterial decarboxylation of amino acids can be N-

nitrosated in the presence of a nitrosating agent. Nitrosamines have been detected in foods 

with added nitrates or nitrites, including salt-preserved fish and meat and in food processed by 

smoking or direct-fire drying.  

 

A mechanism that has attracted particular attention is the formation of heterocyclic 

amines (HCA) and polycyclic aromatic hydrocarbons (PAH) carcinogens in meat when it is 

cooked at high temperature for a long time or over an open flame. HCAs have been shown to 

be potent mutagens in bacteria (Sugimura, 1977) and cultured cells (Miura et al., 1993; Fan et 

al., 1995; Zhu et al., 2000), and carcinogens in mice and rats (Ito et al., 1991; Imaida et al., 

1996; Ito et al., 1997; Shirai et al., 1997; Snyderwine et al., 2002). Mechanistic data show 

that, even at low doses, heterocyclic amines form DNA adducts in rodents, primates and 

humans. If HCAs were also to be established as important human carcinogens, meat could 

potentially be made “safer” to eat by being cooked in a way that does not lead to HCA 

formation (Forman, 1999). 

 

Early epidemiological studies conducted in the 1980s suggested an association between 

meat-cooking techniques and cancer risk. Today the majority of epidemiological studies 

performed generally supports the hypothesis that high-temperature cooking techniques and 

doneness level increase the risk for human cancers at various sites, particularly colorectal 

cancer. Table 1.1 summarizes human studies that have investigated the relationship between 

meat doneness and cancer at different sites. More than 80% of these studies show a positive 

correlation between cancer incidence and well-done meat consumption. 
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Table 1.1.  Human studies investigating well-done meat and cancer risk. 

Study Resulta Cancer Site Nc (Age if given) 
Han et al., 2004 OR = 2.38  Breast  635 
Dai et al., 2002 OR = 1.92  Breast  3015 (25–64) 
Zheng et al., 2002 OR = 3.4  Breast  683 (postmenopause) 
Balbi et al., 2001 OR = 2.66 (bbq)  Bladder  720 (40–89) 
 OR = NA (fried)    
Zheng et al., 2001 OR = 2.0 Breast  488 (55–69) 
Delfino et al., 2000 NA  Breast  394 (>39) 
Sinha et al., 2000 OR = 1.9  Breast  930 (56–67) 
Zheng et al., 1998 OR = 4.6  Breast  930 (55–69) 
Butler et al., 2003 OR = 2.0  Colon  1658 (40–80) 
Kampman et al., 1999 OR = 1.4 (men only)  Colon  3402 (30–79) 
Sinha et al., 1999 OR = 1.85/10 g meat  Colon  374 

Augustsson et al., 1999  NA  Colon, rectum, 
bladder, kidney  1565 (56–80) 

Schiffman and Felton, 1990 OR = 3.5  Colon  146 
Barrett et al., 2003 OR = 1.97  Colon/rectum 2164 (45–80) 
Tiemersma et al., 2004 NA  Colon/rectum  864 
Le Marchand et al., 2002 OR = 8.8  Colon/rectum  1454 
Nowell et al., 2002 OR = 4.36  Colon/rectum  460 (20–88) 
Sinha et al., 2001 OR = 1.29  Colon/rectum  374 
Gunter et al., 2005 NA Colon/rectum  565 (50–70) 
Navarro et al., 2004 OR = 4.57  Colon/rectum  893 (23–80) 
Terry et al., 2003 NA  Esophagus  1004 (<80) 
 NA  Gastric cardia  1077 (<80) 
 OR = 2.4  Esophagus  982 (<80) 
Bosetti et al., 2002 OR = 1.89  Larynx  1824 (31–79) 
Sinha et al., 1998b OR = 1.8  Lung  1216 (52–79) 
Zhang et al., 1999b RR = 2.2  NHLd  88410 (48–74) 
Anderson et al., 2002  OR = 2.19  Pancreas  867 (20–65+) 
Norrish et al., 1999  Positive trend  Prostate  787 
Nowell et al., 2004  OR = 8.27  Prostate  923 
Murtaugh et al., 2004  OR = 1.33  Rectum  2157 
Ward et al., 1997 OR = 2.4  Stomach  678 (∼67–82) 
 OR = 2.0  Esophagus  645 (∼67–82) 
a OR  = odds ratio; RR  = relative risk; NA = no association. 
b Prospective study; all other studies were case-control. 
c N = number of subjects. 
d NHL = Non-Hodgkin lymphoma. 
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2. HCAs: formation, occurrence and intake 

2.1. HCAs: classification, structural features and chemical properties 

In 1977 it was found that particles of smoke, produced by cooking proteinaceous 

foodstuffs contained significant quantities of mutagens (Sugimura et al., 1977). Subsequently, 

Sugimura and coworkers demonstrated the presence of high mutagenic activity in the charred 

surface of beef and fish, grilled over a naked flame or charcoal (Nagao et al., 1977).  Since 

then, more than 20 highly mutagenic heterocyclic aromatic amines have been isolated and the 

structures of these fully elucidated (Table 1.2).  
 

Table 1.2. Chemical names and abbreviations of the different HCAs commonly found in 

cooked foods. 

Quinolines  
   IQ 2-Amino-3-methylimidazo[4,5-f]quinoline 
   MeIQ 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline 
Quinoxalines  
    IQx 2-Amino-3-methylimidazo[4,5-f]quinoxaline 
    8-MeIQx 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline 
    4,8-DiMeIQx 2-Amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline 
    7,8-DiMeIQx 2-Amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline 
    4,7,8-TriMeIQx 2-Amino-3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline 
    4-CH2OH-8-MeIQx 2-Amino-4-hydroxymethyl-3,8-dimethylimidazo[4,5-f]quinoxaline 
    7,9-DiMeIgQx 2-Amino-1,7,9-trimethylimidazo[4,5-g]quinoxaline 
Pyridines  
    PhIP 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine 
    4’-OH-PhIP 2-Amino-1-methyl-6-(4-hydroxyphenyl)imidazo[4,5-b]pyridine 
    DMIP 2-Amino-1,6-dimethylimidazo[4,5-b]pyridine 
    TMIP 2-Amino-1,5,6-trimethylimidazo[4,5-b]pyridine 
Furopyridines  
    IFP 2-Amino-1,6-dimethylfuro[3,2-e]imidazo[4,5-b]pyridine 
Pyridoimidazoles 
and indoles  

    Trp-P-1 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole 
    Trp-P-2 3-Amino-1-methyl-5H-pyrido[4,3-b]indole 
    Glu-P-1 2-Amino-6-methyldipyrido[1,2-a:3’,2’-d]imidazole 
    Glu-P-2 2-Aminodipyrido[1,2-a:3’,2’-d]imidazole 
    AαC 2-Amino-9H-pyrido[2,3-b]indole 
    MeAαC 2-Amino-3-methyl-9H-pyrido[2,3-b]indole 
    Norharman β-Carboline 
    Harman 9-Methyl-β-carboline 
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According to Miller (1985), a heating temperature of about 300 °C is a critical boundary 

for the formation of different classes of mutagens from proteinaceous food, such as meat and 

fish. Those formed above 300 °C are protein pyrolysates and characterized as 2-amino-

pyridine-mutagens (or amino-carbolines) (Sugimura, 1986; Wakabayashi et al., 1997), while 

those formed at moderate temperatures (below 300 °C) are 2-amino-imidazole-type mutagens 

(or aminoimidazo-azaarenes (AIAs)) (Furihata and Matsushima, 1986; Jägerstad et al., 1998). 

Kataoka (1997) further divided pyrolytic mutagens into five groups, pyridoindoles, 

pyridoimidazoles, phenylpyridines, tetraazafluoranthrene and benzimidazole; and the AIAs 

into three groups, quinolines, quinoxalines and imidazopyridines. Based on polarity (Figure 

1.4), HCAs can also be divided into polar, which are mainly of the IQ- and IQx-type as well 

as the imidazopyridine type, and non-polar which have a common pyridoindole or 

dipyridoimidazole moiety (Murkovic, 2004). All HCAs have at least one aromatic and one 

heterocyclic structure. Most of them have an exocyclic amino group, except for the β-

carbolines, harman and norharman (Jägerstad et al., 1998). The amino groups or nitrogen 

atoms may have different pKa values. This together with different positions and number of 

the ionizable moieties, will, therefore, affect the behavior of HCAs during chromatographic 

separation. 
 

 
 

Figure 1.4  Chemical structures of representative polar and non-polar HCAs.  
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2.2. Formation of heterocyclic aromatic amines  

2.2.1 Identification of the precursors 

The first published model systems where mutagenic compounds were identified, were 

pyrolysis reactions of amino acids and proteins. Other food constituents such as nucleic acids, 

starch or oil did not form mutagenic substances during pyrolysis (Nagao et al., 1977). Heating 

of single amino acids also resulted in the formation of mutagenic substances that were 

identified as heterocyclic aromatic amines. In general, these products of pyrolysis were 
assigned as the non-polar HCAs. In contrast, the polar HCAs were formed at normal cooking 
temperatures. These mutagens were identified in fried meat and fish (Sugimura et al., 1977). 
They were also found in meat products, e.g. in meat extract that is extracted at comparably low 
temperatures but using longer times for processing (Murkovic, 2004). The precursors 
responsible for these polar HCAs were identified when the chemical structures of the first 
compounds from cooked fish (Kasai et al., 1980; Kasai et al., 1981a) and beef (Kasai et al., 
1981b; Felton et al., 1986b) were determined. The aminoimidazo structure of the heterocyclic 
compounds suggested that creatine or creatinine was involved in the reactions. Early work in 

adding creatine to meat before cooking showed that it increased mutagenic activity (Jägerstad et 

al., 1983b). Övervik et al. (1989) showed that free amino acids were involved in the 

formation of mutagenic activity. Jägerstad et al. (1983a) developed a system for heating the 

precursors in diethylene glycol and this work was followed by many studies investigating 

heterocyclic amine precursors (Skog and Jägerstad, 1993) and kinetics (Arvidsson et al., 

1997) in a sealed-tube aqueous model. Reaction intermediates were identified that lead to the 

formation of PhIP (Zöchling and Murkovic, 2002). Simple dry heating of heterocyclic amine 

precursors also forms similar relative amounts and types of heterocyclic amines as are seen in 

cooked meats. Table 1.3 shows amino acid, creatine and glucose content of beef, chicken 

breast and codfish. When these components are combined and heated for 30 minutes at 225 

°C, a family of HCAs is formed. These vary with the mixture composition. The model 

systems in Table 1.3 show that arginine, glutamic acid, leucine and phenylalanine are greatly 
reduced in codfish compared to beef or chicken. Phenylalanine, a known precursor for PhIP, is 
highest in the chicken model system, and formed from tyrosine and isoleucine, which are also 
highest in chicken (Johansson et al., 1995).  

 

When using meat juice for model systems, the complexity increases since several polar 

and non-polar HCAs are formed (Arvidsson et al., 1999; Borgen et al., 2001). Since the 

composition of the precursors (amino acids, glucose, creatine) simulates the chemical 
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environment in the meat much better than a solution of single amino acids in diethylene 

glycol, the results are more relevant but much more complicated to interpret. Depending on 

the type of meat from which the juice is derived, the amino acid composition and the glucose 

and creatine content vary to a great extent.  

 

Table 1.3. Concentration (mg/g meat wet weight) of free amino acids, creatine and glucose 

in three kinds of meats (after: Pais et al., 1999). 

 Beef Chicken Breast Codfish 
L-Alanine  0.14 0.21 0.12 
L-Arginine  1.07 1.19 0.03 
L-Aspartic acid  0.02 0.13 0.01 
L-Glutamic acid  0.09 0.23 0.02 
L-Glycine  0.06 0.08 0.05 
L-Histidine  0.14 0.18 0.03 
L-Isoleucine  0.05 0.08 0.02 
L-Leucine  0.07 0.13 0.02 
L-Lysine  0.07 0.14 0.18 
L-Methionine  0.06 0.08 0.04 
L-Phenylalanine  0.05 0.08 0.01 
L-Proline  0.10 0.10 0.14 
L-Serine  0.05 0.12 0.02 
L-Threonine  0.28 1.63 0.69 
L-Tyrosine  0.06 0.10 0.03 
L-Valine  0.06 0.10 0.04 
Creatine  6.33 3.54 7.06 
Glucose  7.03 0.47 0.21 

 

2.2.2 Chemistry of HCA formation  

At the beginning of the last century, Maillard proposed the browning reaction to 

account for the brown pigments and polymers produced from the reaction of the amino group 

of an amino acid and the carbonyl group of a sugar (Maillard, 1912). The chemistry 

underlying the Maillard reaction is very complex. It encompasses not one reaction pathway 

but a whole network of various reactions. The original comprehensive reaction scheme of 

Hodge (1953) has been improved continuously since that time. At some stages of the 

browning reaction, e.g. pyrazines (Hwang et al., 1994), quinoxalines (Morita and Takagi, 

1990) and pyrido[3,4-d]imidazoles (Gi and Baltes, 1994) are formed that are involved in the 

formation of HCAs. The involvement of these N-heterocycles derived from the Maillard 

reaction in the formation of HCAs is depicted in Figure 1.5. It can be seen that methylated 

pyridines and pyrazines are precursors in this reaction pathway. Aldehydes that are also 
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products resulting from the high temperature reaction are necessary as well as creatinine that 

forms the imidazo moiety of all polar HCAs (Jägerstad et al., 1983). 

 

 
 

Figure 1.5  Formation of imidazoquinolines and imidazoquinoxalines from products of the 

Maillard reaction (2-methylpyridine, 2,5-dimethylpyrazine) with acetaldehyde 

and creatinine. 

 

2.2.3 Formation of PhIP 

It has been convincingly demonstrated that phenylalanine and creatinine are precursors 

of PhIP by dry heating of 13C-labelled phenylalanine and creatinine (Felton and Knize, 1991). 

PhIP may also be produced from creatine heated together with leucine, isoleucine and 

tyrosine. Accordingly, glucose seems not to be a necessary precursor using dry heating 

conditions (Skog et al., 1998). 

 

However, glucose was found to have a considerable influence, either enhancing or 

inhibiting, depending on its concentration, the yield of PhIP produced from phenylalanine and 

creatine in a liquid model system (Skog and Jägerstad, 1990) and during dry heating (Felton 

and Knize, 1991). Manabe et al. (1992) reported that a tetrose (erythrose) is the most active in 

PhIP formation, when phenylalanine and creatinine dissolved in water are heated at 

temperatures of 37 and 60 °C. This author found PhIP in heated mixtures of creatinine, 

phenylalanine and aldehydes (Manabe et al., 1992), as well as in mixtures of phenylalanine, 

creatinine and nucleic acids (Manabe et al., 1993a). The 4-hydroxy derivative of PhIP was 

found in an analogous reaction using tyrosine instead (Wakabayashi et al., 1995). 
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The formation of PhIP in a simple model system with just phenylalanine and creatinine 

as precursors starts with the formation of the Strecker aldehyde phenylacetaldehyde (Figure 

1.6). The second step is an aldol condensation of the aldehyde with creatinine and 

subsequently a dehydration. Both products, the addition [A] as well as the condensation [B] 

product, were identified in the model system and in heated meat as well (Zöchling and 

Murkovic, 2002). The origin of the nitrogen forming the pyridine moiety of PhIP is at least 

twofold. First it can be the amino group of creatinine that reacts with the oxo group of the 

intermediate and second the amino group of phenylalanine or even free ammonia. The origin 

of the carbon atoms 5, 6 and 7 in PhIP was identified by the use of 13C-labelled phenylalanine 

(labeled at C-2 and C-3, respectively) and analyzing the formed PhIP by NMR (Murkovic et 

al., 1999). Combining these results a mechanism for the formation of PhIP was formulated 

(Figure 1.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 1.6  Formation of PhIP with identified intermediate reaction products.  
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2.2.4 Factors affecting the yields of HCAs  

2.2.4.1 Cooking temperature, time, water content and cooking methods 

Many studies suggest that both time and temperature have a strong impact on the 

formation of HCAs (Bjeldanes et al., 1983; Arvidsson et al., 1997) and that the amounts of 

HCAs generally increase with increasing temperature and time (Gröss and Grüter, 1992; Skog 

et al., 1997). Effect of temperature was especially important according to a function 

developed by Bjeldanes et al. (1983), where the temperature term was raised to a much higher 

exponent than the time factor. The temperature dependence of the formation of PhIP has been 

investigated in several studies. Using liquid model systems, the yield of PhIP from 

phenylalanine, creatinine and glucose was shown to increase when the temperature was 

increased from 180 to 225 °C (Skog and Jägerstad, 1991). Similar results were obtained by 

Knize et al. (1994).  

 

On the other hand, heating at much lower temperature (∼100 °C), may also give rise to 

HCA formation if the duration of heat treatment is prolonged (Jägerstad et al., 1998). For 

example, Manabe et al. (1992 and 1993a) reported the presence of PhIP in a meat juice 

system heated at 37 and 60 °C for 4 weeks. Although there have no conclusions been drawn 

on the definite effect of temperature, it would be prudent to maintain low cooking 

temperatures, avoid sudden increments in temperature and avoid unnecessary prolonged heat 

treatment in terms of minimizing mutagen formation (Skog et al., 1998). One such strategy 

could be mixing of ground meat with water binding compounds, such as soy protein, starch or 

other polysaccharides, which will help lower surface temperature and hinder transport of 

water soluble precursors (Skog et al., 1998; Shin et al., 2003; Kikugawa, 2004).  

 

Variations between food samples indicate that heat processing has a marked effect on 

the levels of HCAs in the products. Modifying the cooking processes could probably reduce 

the amounts of HCAs. Frying beefburgers using specially designed frying equipment with a 

thermostatically controlled hotplate produced 10-fold fewer HCAs than frying using a 

standard frying device (Johansson and Jägerstad, 1994; Johansson et al., 1995). Oven-roasting 

is another cooking method that produces fewer HCAs than pan-frying (Skog et al., 1997), due 

to the less efficient heat transfer in air than when the product is in direct contact with a frying 

pan. Also, oven-roasted meat usually has a lower surface area relative to its mass than, for 

example, beefburgers, and since HCAs are formed predominantly in the crust, the amounts of 
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HCAs per portion are lower. When chicken and beefburgers were cooked in a convection 

oven, less mutagenic activity was formed in the presence of steam, which affected the heat 

transport and decreased the surface temperature of the products (Skog et al., 2003). Some 

minutes of microwave pretreatment of meat before frying has been suggested as another way 

to decrease HCA formation due to loss of HCA precursors with the meat juice (Felton et al., 

1994a). 

 

2.2.4.2 Content and types of fat and free radical reactions 

Fat has been reported to physically affect the amount of mutagens formed during 

cooking due to efficient heat transfer in fat (Barnes and Weisburger, 1983; Holtz et al., 1985). 

Fat has also been reported to affect the formation of HCAs by dilution of the precursors in 

meat (Knize et al., 1985). However, fat may be involved chemically in the formation of 

HCAs, by generating free radicals via lipid oxidation or by participating in the Maillard 

reaction. These reactions may result in an enhanced yield of certain Maillard reaction 

products, for instance pyrazines and pyridines, which are assumed to be involved in the 

formation of HCAs (Murkovic, 2004). Despite the possible involvement of lipid/fatty acids-

derived radicals, their exact effects on mutagen formation in meats and fish have been 

controversial: while some studies have reported enhancing effects (Nilsson et al., 1986; 

Johansson et al., 1993; Felton et al., 2000), others reported no effects (Johansson et al., 1993) 

or even inhibitory effects (Barnes and Weisburger, 1983; Knize et al., 1985). It was observed 

that fats have an enhancing effect on the yield of HCAs in model systems, probably by free 

radicals formed during thermally induced fat oxidation  (Felton et al., 2000). Addition of Fe2+ 

or Fe3+ to a model system containing creatinine, glycine and glucose almost doubled the 

amount of MeIQx formed, probably due to iron-catalyzed lipid peroxidation, and thus, 

formation of free radicals (Felton et al., 2000). Surprisingly, Johansson and Jägerstad (1993) 

found that the degree of oxidation of fat did not affect the yield of MeIQx. Further studies are 

demanded before specific recommendations can be made on the types and concentrations of 

fat/fatty acids to be added during cooking. 

 

2.2.4.3 Presence/addition of inhibitors 

Despite the possibility that HCA formation during cooking and thus mutagenic activity 

in food products may be reduced via manipulation of some food components, it is strongly 

conceivable that more effective inhibition can be accomplished through addition of potent 
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inhibitors at certain stages of the heating process. Desirable inhibitors should fulfill the 

following criteria: (a) capable of causing significant reduction in total HCA content at low 

doses; (b) do not lead to formation of new HCAs (based on analysis of HCA profiles); (c) do 

not lead to formation of new or more potent mutagens (Cheng et al., 2006).  

 

Phytogenic inhibitory agents 

A wide range of natural agents have been tested for their effects on formation of HCAs 

in model systems and in real food. However, few data on those isolated from dietary plants 

are available and the mechanism of inhibition has been abridged to antioxidation (Kikugawa, 

1999). These phytochemicals mainly include antioxidative (AO) vitamins, phenolic 

compounds and carotenoids. 

 

Vitamin C and α-tocopherol did not demonstrate consistent effects when added to real 

food systems (Kikugawa et al., 2000; Tai et al., 2001). Results for different phenolic 

compounds have also been divergent as well as their roles in the formation of different types 

of HCAs. Lee et al. (1992) found that flavones inhibited IQ-type mutagen formation in simple 

model systems. In a later study employing different kinds of phenolic AOs, contradictory 

observations were obtained for ellagic acid, syringic acid and nordihydroguaiaretic acid 

(Oguri et al., 1998). Active principles from spice plants have also been targets in several 

studies (Persson et al., 2003). In particular, curcumin exhibited dose-dependent inhibition of 

mutagenic Maillard products in model systems. Tea phenolics, especially green tea catechins, 

(-)-epigallocatechin gallate and caffeic acid have also been reported to inhibit IQx-type HCA 

formation (Weisburger, 1994; Oguri et al., 1998). Apart from adding pure phytochemicals, 

addition of plant extracts/tissues is another approach to derive benefits from purported 

inhibitors. Vitaglione et al. (2002) reported that carotenoid extracts from tomato reduced IQx-

type HCA formation in both chemical and meat juice systems. Addition of soy protein prior 

to high temperature heating can be bifunctional. Apart from serving as a layer of physical 

insulator, its phenolic components may also interfere with HCA formation (Vitaglione and 

Fogliano, 2004). A number of spices such as thyme, marjoram and rosemary have shown to 

exert diverse effects on HCA formation (Vitaglione and Fogliano, 2004). As an example, 

Murkovic et al. (1998) reported that application of dried rosemary, thyme, sage and garlic to 

the surface of meat prior to heating resulted in a significant reduction in HCA content, but to 

various extents with respect to different HCAs. On the other hand, extracts from many of 
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these spices were shown to exert an enhancing effect on formation of PhIP in model systems 

(Zöchling et al., 2002). The large discrepancy in the effects of AO phytochemicals on HCA 

formation further emphasizes their ability to switch between an AO and a pro-oxidant role, 

depending on their specific chemical environments.  

 

Synthetic antioxidative agents (AOs) 

Synthetic antioxidative agents that have been extensively tested for inhibition of HCA 

formation include butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), propyl 

gallate (PG) and tert-butylhydroquinone (TBHQ). In real food systems, BHA, PG and TBHQ 

were found to reduce formation of HCAs at a concentration of 100 ppm (Cheng et al., 2006). 

In another study using a real food system at boiling temperature, it was found that BHT had a 

net minor inhibitory effect (Lan et al., 2004), whereas in simple model systems constituting of 

pure HCA precursors, these synthetic AOs and BHT exerted opposite effects, particularly 

TBHQ, which increased MeIQx formation by more than 200% at 100 ppm (Johansson and 

Jägerstad, 1996). 

 

Organosulfur compounds 

Organosulfur compounds are another group of compounds that are receiving increasing 

attention in view of the finding that they may be effective in inhibiting non-enzymatic 

browning reaction (Cheng et al., 2006). The most well studied sulfur-containing compound in 

relation to inhibition of HCA formation is sodium bisulfite (NaHSO3). Addition of NaHSO3 

was demonstrated to significantly inhibit the formation of HCAs in canned foods (Krone et 

al., 1986). Inhibitory effects of some organosulfur compounds such as diallyl sulfide, 

dipropyl disulfide and diallyl disulfide on HCA formation have also been evidential based on 

model systems (Shin et al., 2002). 

 
2.3. Occurrence of heterocyclic aromatic amines 

2.3.1 Quantitative and qualitative analysis of HCAs 

For preliminary studies and for facilitating measurements, levels of HCAs formed in 

model systems can be boosted. However, the amount of HCAs formed may still be in the 

nanogram per gram order. Therefore, efficient and robust analytical techniques are essential, 

especially when analyzing complex real food matrices, which contain lots of interfering 
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substances, which may comprise detection limits and complicate spectral interpretation.  Prior 

to quantitative and/or qualitative analysis, liquid-liquid extraction (Murray et al., 1988), or 

solid-phase extraction (SPE) (Gross, 1990) has been regarded as a critical step, both for 

cleaning and concentration of target chemical species. Blue cotton or blue rayon extraction 

methods have also been employed (Bang et al., 2002).  

 

Several methods have been used for the identification and quantification of HCAs (Pais 

and Knize, 2000). Table 1.4 summarizes the most commonly used methods and detectors for 

the determination of HCAs in cooked foods. LC has been the most popular chromatographic 

technique for separation of HCAs following extraction/purification and reconstitution in 

compatible solvents. Moreover SPE-LC has been compared and validated through 

interlaboratory studies (Santos et al., 2004). Subsequent identification of known compounds 

can be achieved by coupling LC to UV photodiode array (DAD)-detector (Gröss and Grüter, 

1992; Warzecha et al., 2002), in addition to confirmation by their retention time. 

Quantification of fluorescent HCAs (non-polar and PhIP) can be achieved by simultaneous 

programmable fluorescence detection, which has been found to be 100-400 times more 

sensitive than UV detection (Schwarzenbach and Gubler, 1992). These detectors are 

satisfactory for samples taken from simple chemical model systems. With applications of 

electrochemical detectors (ED) (Billedeau et al., 1991) and mass spectrometers (MS) 

(Turesky et al., 1988), the challenge of ultracomplicated spectra arising from complex sample 

matrices has been largely overcome by increased sensitivity and selectivity.  

 

HPLC in combination with mass spectrometry (LC–MS) was used, by Gross et al. 

(1993) to analyze highly complex extracts of bacon and later to analyze HCAs in beef extract 

with atmospheric pressure ionization (Pais et al., 1997a) and with electrospray ionization 

(Pais et al., 1997b). MS seems to be a valuable tool in obtaining reliable results in the analysis 

of complex matrices. There are also reports on the use of LC–MS/MS for the analysis of 

HCAs (Guy et al., 2000; Busquets et al., 2007; Ni et al., 2008). GC has also been used for 

separation of HCAs. Despite the requirement of a derivatization step, its simplicity, separation 

efficiency, sensitivity and specificity when coupled to MS have granted it another valuable 

analytical tool for HCAs, especially in laboratories where more sophisticated techniques like 

LC-MS/MS are not accessible (Barcélo-Barrachina et al., 2005). 
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Table 1.4. Methods for the identification and quantification of heterocyclic amines 

(HCAs) in cooked foods (after: Pais and Knize, 2000). 

Method Detector Detection 
limit (ng/g) 

Advantages Disadvantages 

HPLC UV-DAD  0.02-50 Peak identity, homogeneity  

 Fluorescence  0.03-2 High sensitivity No peak confirmation, 
only the less polar HCAs 

 ED 0.05-2 Good selectivity and 
sensitivity, columns with 
smaller diameter give good 
separation at low flow rates 

No peak confirmation, 
isocratic conditions 

 MS 0.01-2 High sensitivity and 
specificity 

 

CE UV, ED, MS 35-50 High separation efficiency, 
low operation cost 

Sample preparation with 
high enrichment 

GC MS 0.01 Capillary GC gives high 
separation efficiency 

Derivatization is usually 
needed 

ELISA  1 Simple Monoclonal antibodies 
only available for a 
limited number of HCAs 

 

2.3.2 Levels of HCAs in cooked foods 

The first quantitative data on HCAs in various meat and fish products, based on HPLC 

or GC-MS analysis, were published in the late 1980s. Earlier literature data on HCA levels in 

foods consists mainly of amounts estimated from the mutagenic activity according to the 

Ames/Salmonella assay. The complex food matrix, the low amounts of HCAs present and the 

need for several isolation steps makes accurate quantification difficult, but in the last decade 

several new methods for extraction, purification and detection have been developed (Kataoka, 

1997; Pais and Knize, 2000; Cardenes et al., 2004; Barcélo-Barrachina et al., 2005; Martin-

Calero, 2007). Studies of the amounts of heterocyclic amines produced in foods as a result of 

regional cooking practices have been reported for Great Britain (Murray et al., 1993), Sweden 

(Johansson and Jägerstad, 1994; Skog et al., 1997; Borgen and Skog, 2004), Spain (Busquets 

et al., 2004; Toribio et al., 2007), Japan (Wakabayashi et al., 1993), Singapore (Wu et al., 

1996) and the United States (Knize et al., 1995; Knize et al., 1998). Some typical amounts of 

HCAs formed in cooked foods are displayed in Table 1.5.  
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Table 1.5. HCA levels in processed foods (after: Skog et al., 1998; Felton et al., 2000). 

MeIQx PhIP 
Food 

ng/g meat wet weight 
Beef burger, fried 0-7 0-32 
Meat balls, fried 0-0.08 0-0.06 
Chicken, fried 0-3 0-480 
Salmon, fried 0-5 0-23 
Beef burger, pan residue 0-6 0-13 
Meat extract 0-80 0-4 
Beef flavor 0-20 0-4 
Beef stock cube 0-0.6 0-0.3 

 

In most cases, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine is the moss mass 

abundant HCA, detected in amounts up to 480 ng/g (Sinha et al., 1995). The amounts of the 

other HCAs are generally lower, ranging from undetectable to tens of ng/g for IQ, MeIQ, 

MeIQx and 4,8-DiMeIQx, with the exception of the IQ content in a fish dish called ‘otak-

otak’ (up to 87 ng/g) (Wu et al., 1996). HCAs are primarily found in the crust of cooked meat 

and fish, but small amounts of HCAs may be present in the inner parts of fried meat (Skog et 

al., 1995).  

 

Commercially cooked food products generally contain very low or undetectable 

amounts of HCAs, with a few exceptions. The levels of HCAs in pan residues after frying 

different meat and fish products are generally the same as in the corresponding food products, 

but in some cases, the amounts are considerably higher. In some countries, pan residues are 

used to make gravy, which may result in a substantial contribution of HCAs to the diet. 

Bouillon cubes contain very low or undetectable amounts of HCAs, and the dietary intake of 

HCAs may thus be reduced simply by discarding the pan residue after frying, and preparing 

gravy and sauces using commercial products such as bouillon cubes. 
 

HCAs have also been detected in fumes formed during the cooking of meat. Vainiotalo 

et al. (1993) found 13.7 pg MeIQx and 7.3 pg DiMeIQx per g fried meat in the fumes from 

frying meat, and Thiébaud et al. (1994) found MeIQx, DiMeIQx and PhIP in fried meat and 

in smoke condensate in which the concentration of these HCAs amounted to about 6% of that 

in the meat. PhIP has also been detected in cigarette smoke condensate (Manabe et al., 1991) 

and in wine and beer (Manabe et al., 1993b; Richling et al., 1997). 
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2.4. Dietary intake of HCAs 

Accurate assessments of the consumption of HCAs are essential for the evaluation of 

human cancer risks. Studies of HCA intake have relied on various methods of dietary 

assessment to determine intake of meat (beef and pork), chicken and fish; the primary sources 

of HCA in the diet. Human exposure to HCAs has been estimated to range from ng/day to 

µg/day, depending on dietary habits and cooking practices (Table 1.6).  

 

Table 1.6. Estimated daily intake of HCAs (mean values). 

Intake of HCAs 
(µg/person.day) 

HCAs included Reference 

0.1-13.8 PhIP Wakabayashi et al., 1992 
0.1-1.3 MeIQx Wakabayashi et al., 1993 
0.8-8.4 Not specified Eisenbrand and Tang, 1993 
0.04-7.0 MeIQx, DiMeIQx, PhIP Johansson and Jägerstad, 1994 
1.8 PhIP>AαC>MeIQx>DiMeIQx>IQ Layton et al., 1995 

0-12.0 MeIQx, DiMeIQx, PhIP Skog et al., 1995; 1997 
0.976 Sum of 9, PhIP>AαC>MeIQx>IQ> DiMeIQx Thomson et al., 1996 

0.4 IQ, MeIQ, MeIQx, DiMeIQx, PhIP Zoller et al., 1997 
0-1.8 PhIP = MeIQx>DiMeIQx>IQ Augustsson et al., 1997 
0.16 MeIQx, DiMeIQx, PhIP Byrne et al., 1998 
0.32-0.51 IQ, MeIQ, MeIQx, DiMeIQx, PhIP, AαC, 

MeAαC, Trp-1, Trp-2 
Sinha et al., 2001 

0.1-0.15 MeIQx, DiMeIQx, PhIP Kobayashi et al., 2002 
0.26-0.36 MeIQx, DiMeIQx, PhIP, Trp-1, MeIQ Nowell et al., 2002 
0.1 MeIQx, DiMeIQx, PhIP Rohrmann et al., 2002 
0.8-1.4 MeIQx, DiMeIQx, PhIP Keating and Bogen, 2004 
0.01-0.1 MeIQx, DiMeIQx, PhIP, IFP Wong et al., 2005 
0.6-0.8 MeIQx, DiMeIQx, PhIP Ericson et al., 2007 
 

A common method of estimating the intake of dietary components, such as HCAs, is to 

administer a food frequency questionnaire that includes commonly consumed foods and the 

amount consumed on a daily (or other regular) basis. The consumption of the specific dietary 

component is then assessed by multiplying the quantity of food consumed by the 

concentration of the component of interest. Sinha and coworkers (1997) developed a 100-item 

food frequency questionnaire that included an evaluation of meat cooking practices (e.g. pan 

frying, broiling, grilling). This food-frequency questionnaire has been coupled with a 

database for three HCA components, MeIQx, DiMeIQx and PhIP, developed by the same 
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research group for meats prepared by different cooking techniques and to different doneness 

levels. The database contains information derived from publications on beef (Sinha et al., 

1998c), pork (Sinha et al., 1998a), chicken (Sinha et al., 1995) and fast-food meat products 

(Knize et al., 1995). In those publications, the authors reported the HCA concentrations in 

different types of meats cooked by different methods and to varying degrees of doneness. 

Photographs were made of the cooked meats to show the internal coloring and external 

browning; the negative photographs were used in conjunction with the food-frequency 

questionnaire to standardize the responses of individuals assessed.   
 

3. Bioavailability of HCAs 

3.1. Concept of bioavailability 

In human health risk assessment, the total amount of an ingested contaminant (intake) 

does not always reflect the fraction that is available to the body. Bioavailability is a term used 

to describe the proportion of the ingested contaminant that reaches the systemic circulation. 

Studies in animals and humans have shown that oral bioavailability of compounds from food 

can be significantly different depending on the food source, food processing or food 

preparation (van het Hof et al., 2000). Thus, a better insight in the effect of the matrix on the 

oral bioavailability of a contaminant will lead to a more accurate risk assessment. 

 

Oral bioavailability of a contaminant can be seen as the resultant of three different 

processes: 

 
1. Release of the compound from its matrix into the gastrointestinal tract (bio-

accessibility). 

2. Transport across the intestinal epithelium and throughout the body (absorption and 

distribution). 

3. Transformation of the compound in the liver or intestine and elimination out of the 

body (metabolism and excretion). 

 

Information related to the potential mutagenic and carcinogenic effects of HCAs is contained 

in ample literature. Quite extensive research has also been performed to estimate the so-called 

relative cancer risk index. However relative scarce attention has been paid to investigate the 

bioavailability of this group of food-borne mutagens, which presumably being variable for 
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different HCAs, may significantly influence their ultimate effective concentrations in target 

physiological sites.  
 

3.2. Absorption and distribution of HCAs 

Both in vitro and in vivo studies indicate that a significant fraction of HCAs is absorbed 

from the gastrointestinal tract in humans (Lang et al., 1999; Malfatti et al., 1999; Krul et al., 

2000; Kulp et al., 2000; 2004) and experimental animals (Turteltaub et al., 1992; 1993). 

Volunteers given [2-14C]PhIP (70 to 84 µg) by capsule excreted 50% to 90% of the 

administered dose in the urine during the first 24 hours (Lang et al., 1999; Malfatti et al., 

1999). However, Kulp et al. (2000; 2004) found that the total urinary excretion of PhIP and 

PhIP metabolites varied widely (4% to 53% dose excreted within 24 hours) in volunteers that 

consumed 200 g of cooked chicken. The authors suggested that the absorption and 

bioavailability of PhIP might be different when consumed as part of the normal diet in a meat 

matrix rather than in a gelatin capsule. The absorption of several HCAs (IQ, PhIP, MeIQ and 

MeIQx) given as a mixture was modeled using a computer-controlled in vitro system that 

mimicked the physiological conditions of the human stomach and small intestine (Krul et al., 

2000). Comparable to an in vivo human model, all four HCAs were readily absorbed in the in 

vitro system, with approximately 50% of the total dose recovered in the dialysate after 2 

hours and 95% after 6 hours. The recovery from the jejunal and ileal compartments 

represented 94% of the total recovery. The remaining 5 ± 1.5% of the starting material was 

recovered in the solution at the end of the small intestine segment. 

 

Studies in experimental animals show that HCAs are rapidly distributed throughout the 

body and that tissue concentrations change rapidly with time (Watkins et al., 1991; Turteltaub 

et al., 1992; 1993; Snyderwine et al., 1994; Dragsted et al., 1995; Mauthe et al., 1998). When 

male F344 rats were given [2-14C]PhIP by gavage, the highest concentrations of radioactivity 

at 12 hours post-dose were found in the colon and cecum, while the highest concentrations at 

24 hours and later were detected in the kidney and liver (Watkins et al., 1991). Turteltaub et 

al. (1992) administered [14C]PhIP by intubation at a dose of 41 ng/kg, which was considered 

to be equivalent to a human dietary dose, to six- to eight-week old C57BL/6 male mice. At 30 

minutes and 1 hour, tissue levels of radiolabel were highest in intestine, stomach and adipose 

tissue, followed by liver, kidneys, pancreas, lung and spleen. By 96 hours post-dose, only 

liver, pancreas, muscle, spleen and lung contained a significant amount of radioactivity. In a 
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follow-up study, peak tissue levels were reached within 3 hours, with the greatest 

concentration of radioactivity in the gastrointestinal tract (GI), liver, kidney, pancreas and 

thymus (Turteltaub et al., 1993). Following a 1 mg/kg dose of [3H]PhIP administered by oral 

intubation to male Wistar rats, the highest total radioactivity was found in the stomach, small 

intestine and bladder after 2 hours. At 24 hours post-dose, the highest residual radiolabel 

concentrations were detected in the kidney and liver (Dragsted et al., 1995). Snyderwine et al. 

(1994) administered oral doses of PhIP (20 mg/kg) as either a single dose or nine daily doses 

to male and female cynomolgus monkeys (Macaca fascicularis). PhIP-DNA adducts were 

detected in all 28 tissues examined, with the exception of fat and bone marrow. 

 

3.3. Liver metabolism of HCAs 

Most HCAs are not mutagenic/carcinogenic in their native form but acquire their 

biological activity after metabolic activation (Kato, 1986). In vitro studies with MeIQx and 

PhIP using liver microsomal preparations from rats, mice and rabbits showed that at least two 

oxidative metabolites were formed from each compound, a ring-hydroxylated product and the 

N-hydroxy derivative (Gooderham et al., 1987; Turteltaub et al., 1989; Watkins et al., 1991; 

Turesky et al., 1991, 1998). In addition, both the parent amines and their primary oxidative 

metabolites can be further biotransformed to a variety of phase II metabolites including 

glucuronides (Kaderlik et al., 1994), sulfate esters (Chou et al., 1995) and acetylated products 

(Lin et al., 1995). As an example, the routes of PhIP metabolism are shown in Figure 1.7.  

 

Examination of the primary oxidative metabolites in a mutagenicity assay such as the 

Ames Salmonella typhimurium test showed that the N-hydroxy metabolites were direct-acting 

mutagens, whereas the ring-hydroxylated products were not (Zhao et al., 1994). Analysis of 

HCA metabolism by human liver microsomes showed N-hydroxylation to be the primary 

oxidative route of metabolism of HCAs with a Km value of 55 µM for PhIP, with little if any 
aromatic hydroxylation (Zhao et al., 1994). Clearly, there are species differences in the oxidative 
metabolism of HCAs since experimental animals are able to both activate and detoxify these 

amines, whereas humans convert them predominantly to their reactive genotoxic metabolite. 
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Figure 1.7  Major biotransformation pathways of PhIP. 

 

Studies using a variety of different approaches have shown that the genotoxic N-

hydroxylation pathway of these amines involves primarily members of the CYP1A2 

subfamily (McManus et al., 1989; Turteltaub et al., 1989; Turesky et al., 1991; Watkins et al., 

1991; Zhao et al., 1994; Crofts et al., 1998; Da Fonseca et al., 2003). However, contribution 

by other cytochromes P450, including CYP1A1, CYP1B1, CYP2A6, CYP3A4, CYP2C9, 

CYP2C10 and CYP2A3, should by no means be neglected when assessing the total risk 

(McManus et al., 1989; Edwards et al., 1994; Crofts et al., 1997; 1998; Schut and 

Snyderwine, 1999; Williams et al., 2000; Josephy et al., 2001). All of these P450 isoforms are 

less active toward HCA substrates than CYP1A2. Levels of CYP1A2 in human liver can vary 

considerably (Sesardic et al., 1990); thus, hepatic metabolism of heterocyclic amines such as 

PhIP will vary within the human population. CYP1A2 expression is almost exclusively 
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hepatic, whereas CYP1A1 and CYP1B1 have been detected in a variety of extrahepatic 

organs, usually after exposure of inducing agents. Hence, the hepatic oxidative metabolism of 

HCAs will be CYP1A2-dependent, whereas in extrahepatic tissues metabolism is likely to be 

supported by CYP1A1 and to a lesser extent by CYP1B1. Again, variations in expression of 

these extrahepatic enzymes will contribute to variation in the overall disposition and toxicity 

of these compounds. 

 

It has been shown that human urinary metabolites of the HCAs MeIQx and PhIP 

include glucuronides and sulfate esters (Turesky et al., 1998; Malfatti et al., 1999). Indeed, N-

hydroxy-PhIP-N2-glucuronide is thought to be the major urinary metabolite of PhIP 

accounting for about 50% of the dose (Malfatti et al., 1999). At least five glucuronides of 

PhIP have been reported, the N2-glucuronide, the N2-hydroxy glucuronide, the N3-

glucuronide, the N3-hydroxy glucuronide and the 4’-hydroxy glucuronide. There is evidence 

from reconstitution and tissue culture studies that N-hydroxy PhIP can also be sulfated 

(Buonarati et al., 1990; Chou et al., 1995; Lewis et al., 1998). Three of the sulfotransferases 

(SULTs 1A2, 1A3 and 1E1) have been shown to sulfate heterocyclic amines and their 

hydroxylamine derivatives (Buonarati et al., 1990; Lewis et al., 1998; Turesky et al., 1998). 

The latter isoform, SULT1E1, is known to be hormonally regulated and readily inducible by 

progesterone. This suggests that sulfation activity could vary, for example during the luteal 

phase of the menstrual cycle when there is a surge in progesterone levels and SULT1E1 

activity may be elevated (Lewis et al., 1998). Since the sulfoxy ester of N-hydroxy-PhIP is an 

unstable product, its detection in biological samples is likely to be very difficult. However, 

the 4’-hydroxy-PhIP-sulfate ester, a detoxification product, has been detected in humans, thus 

demonstrating the involvement of sulfotransferase in PhIP metabolism (Malfatti et al., 1999). 

N-Hydroxylation of the HCAs, the primary metabolic pathway in humans, is also the primary 

route of HCA genotoxicity. For some HCAs, the N-hydroxy metabolite reacts poorly with 

DNA, but it can be converted to highly reactive derivatives by esterification. Other 

mammalian phase II enzymes that have been identified are N-acetyltransferase (NAT), prolyl 

tRNA synthetase and phosphorylase which produce N-acetoxy, N-prolyloxy, N-phosphatyl 

ester derivates, respectively (Schut and Snyderwine, 1999). Among these, NAT, expressed 

both in rodents and humans (predominantly in the liver), appears to play a dominant role, at 

least in phase II bioactivation of IQ, MeIQx and PhIP (Minchin et al., 1993). It was suggested 

that rapid acetylator individuals might be more susceptible to HCA toxicity (Minchin et al., 
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1993). Studies with bacterial strains that are deficient, proficient and overexpress 

acetyltransferase enzymes show the importance of this esterification reaction in the metabolic 

activation of the heterocyclic amines to bacterial mutagens (Gooderham et al., 2001). Like the 

N-hydroxy sulfate esters, the acetyl esters of the N-hydroxy heterocyclic amines are extremely 

reactive and readily damage DNA.  

 

3.4. Metabolism of HCAs by human intestinal microbiota 

3.4.1 Microbial biotransformation activity 

For many years, it was believed that the main purpose of the large intestine was the 

resorption of water and salt by the body and the facilitated disposal of waste material. 

However, the human large intestine harbors a highly complex microbial ecosystem of about 

200 g living cells, at concentrations of 1012 microorganisms per gram gut content, the highest 

recorded for any microbial habitat (Whitman et al., 1998). The use of culture-independent 

approaches (Zoetendal et al., 2004; Gill et al., 2006) and new ecological theories about 

evolutionary forces shaping the microbial community in the intestine (Bäckhed et al., 2005; 

Dethlefsen et al., 2006; Ley et al., 2006) have given more insight in the structure of this 

ecosystem. Although 55 and 13 divisions have been described of respectively bacteria and 

archaea, the gut microbiota are dominated by only two bacterial divisions, the Bacteroidetes 

(bacteroides) and Firmicutes (clostridia, eubacteria, …), with lower levels of Actinobacteria 

(bifidobacteria) and by one member of the Archaea, Methanobrevibacter smithii. At this 

level, the intestinal communities of all humans therefore appear quite similar. However, 

within these divisions, a limited number of lineages terminate in broad, shallow radiations 

comprising hundreds of species and thousands of strains, making the microbiota of an 

individual as personalized as a fingerprint (Bäckhed et al., 2005; Ley et al., 2006). 

 

Driven by selection forces at both microbial and host levels, this microbial community 

has coevolved in a mutualistic relation with the human host with important implications for 

health and disease. This involves the stimulation of the gut immune system (Salminen et al., 

1998), the regulation of cell proliferation (Dethlefsen et al., 2006), the synthesis of vitamins 

K and B (Conly and Stein, 1992), energy salvation (Bäckhed et al., 2004) and pathogen 

resistance (Hopkins and Macfarlane, 2003). On the other hand, the specific microbial 

community assemblage may also be seen as a risk factor contributing to a state of disease 
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(Ley et al., 2006). This is shown by recent reports linking intestinal bacteria with diseases 

ranging from allergies (MacDonald and Monteleone, 2005) to bowel inflammation (Elson et 

al., 2006) and obesity (Bäckhed et al., 2007).  

 

But the intestinal community has also another important role. Taking together the 

genomes of all these bacteria, the microbiome has a coding capacity that vastly exceeds that 

of the human genome and encodes biochemical pathways that humans not have evolved 

(Egert et al., 2006). Thus, the intestinal microbiota can be regarded as a separate organ within 

the human host, that is capable of at least as many conversions than the human liver (Table 

1.7). Most resident colon microbiota typically perform fermentation of carbohydrates and 

proteins, but it has become clear that many bacterial groups are also capable of transforming 

xenobiotics (Illet et al., 1990). Numerous findings show that intestinal microorganisms and 

lactobacilli contained in dairy products play a key role in the activation and detoxification of 

various classes of DNA-reactive carcinogens such as nitrosamines, aflatoxins, polycyclic 

aromatic hydrocarbons, azo compounds, nitroarenes and glycosides (Rowland and Grasso, 

1975; Oatley et al., 2000; Wang et al., 2004; Van de Wiele et al., 2005). 

 

In contrast to the oxidative and conjugative reactions from the phase I and II enzymes in 

the enterocytes and hepatocytes, the bacterial metabolism is more reductive, hydrolytic and 

even of degradative nature with great potential for both bioactivation as detoxification of 

xenobiotics (Illet et al., 1990). Additionally, the intestinal microbiota also interfere with the 

human biotransformation process through enterohepatic circulation of xenobiotic compounds. 

Compounds that have been absorbed in the intestine and subsequently detoxified are usually 

conjugated with polar groups in the liver prior to excretion in the bile (Illet et al., 1990). Once 

released in the intestinal lumen, these conjugates may be hydrolyzed again by bacterial 

enzymes such as β-glucuronidases, sulfatases and glucosidases. McBain and MacFarlane 

(1998) estimated that 1010-1012 bacteria/mL intestinal content produce β-glucosidase and 107-

1011 produce β- glucuronidase, showing the importance of intestinal bacteria in this 

deconjugation process. 
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Table 1.7.  Metabolic potency of the human gastrointestinal microbiota (after: Illet et al., 

1990). 

Reactions Enzyme Microbiota 
Hydrolysis   

   Glucuronides β-glucuronidase E. coli 

   Glycosides  β-glucosidase 
Enterococcus faecalis, Eubacterium rectale, 
Clostridium sphenoides 

   Amides Amide hydrolase E. coli, Bacillus subtilis, Bacillus mycoides 
   Esters Deacetylase Enterococcus faecalis 
   Sulphamates Arylsulfotransferase Clostridia, enterobacteria, enterococci 

Reductions   
   Azo-compounds Azoreductase Clostridia, lactobacilli 

   Unsaturated lacton 
Unsaturated glycoside 
hydrogenase 

Eubacterium lentum 

   Aliphatic double     
   bounds 

Unsaturated fatty acid 
hydrogenase 

Enterococcus faecalis 

   Nitro-compounds Nitroreductase E. coli, Bacteroides 
   N-oxides N-oxide reductase Human colon 
   S-oxide Sulfoxide reductase E. coli 
   Ketones Hydrogenase Rat cecum 
   Hydroxylamines Nitroreductase Rat GIT 

Dehydroxylation   

   Demethylation Demethylase Enterococci, lactobacilli, clostridia 
   N-demethylation N-demethylase Clostridia, bacteroides 
   Deamination  Deaminase E. coli, bacteroides, clostridia 
   Decarboxylation Decarboxylase Enterococcus faecalis 
   Dehydrogenation Dehydrogenase Clostridium welchii 
   Dehalogenation Dehalogenase E. coli, Aerobacter aerogenes 

Synthetic reactions   

   Esterification Acetyltransferase E. coli 
   N-nitrosation  Enterococcus faecalis, E. coli 

Other reactions   

   Oxidation Oxidase E. coli, Enterococcus faecalis 
   Isomerization Isomerase Eubacterium rectale, Clostridium sphenoides 
   Fission aliphatic Tryptophase E. coli, Bacillus alvei 
   Fission ring C-S lyase Pig GIT, Eubacterium aerofaciens 
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3.4.2 Conversion of HCAs by intestinal microorganisms 

A few studies have highlighted the crucial impact of the intestinal microbiota in the 

genotoxicity of HCAs. Following IQ administration, DNA adducts have been observed in 

mice harboring their native or a human-originating microbiota while adducts were extremely 

low or absent in germ-free animals (Hirayama et al., 2000). Similarly, the extent of IQ-

induced DNA damage in colonocytes and hepatocytes, measured with the comet assay, is 2- 

to 3-fold higher in human fecal microbiota-associated (HFA) rats and 4- to 5-fold higher in 

conventional rats, than in germ-free counterparts (Kassie et al., 2001). Using HFA rats, it has 

also been demonstrated that the intestinal microbiota are essential to the induction of DNA 

damage by PhIP (Hollnagel et al., 2002). The different mechanisms by which the intestinal 

microbiota may affect the genotoxic and carcinogenic effects and thus metabolism of HCAs 

are depicted schematically in Figure 1.8 and will be discussed in the following paragraphs. 

 

 
 

Figure 1.8 Schematic representation of the interactions between intestinal bacteria and 

HCAs (after: Knasmüller et al., 2001). 
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3.4.2.1 Detoxification of HCAs by lactic acid bacteria 

Lactic acid bacteria (LAB) are commonly found in the gastrointestinal tract and are 

utilized in many fermented dairy, meat and cereal products. Some LAB strains are termed 

‘probiotics’ as they contribute to the maintenance of health (Salminen et al., 1998). These 

specific probiotic strains may enhance the host’s immune response, remove potential 

carcinogens or alter the metabolic activity of the intestinal microbial community and the 

action of bile salts (Rafter, 1995). A number of studies have been published which describe 

the detoxification of HCAs by lactic acid bacteria (Orrhage et al., 1994; Bolognani et al., 

1997; Lankaputhra and Shah, 1998; Sreekumar and Hosono, 1998; Tavan et al., 2002; Turbic 

et al., 2002; Zsivkovits et al., 2003). 

 

The exact mechanism of antimutagenicity is unclear and appears to vary with different 

strains. Direct binding of heterocyclic amines by LAB has been proposed (Orrhage et al., 

1994). Lankaputhra and Shah (1998) however suggested that living bacteria might produce 

metabolites or catalyze reactions, which lead to detoxification of amines. Zsivkovits et al. 

(2003) also proposed the involvement of indirect mechanisms in the antimutagenicity of LAB 

towards HCAs. It has been shown that lactobacilli adhere to intestinal mucosa cells in vitro 

and in vivo and it is conceivable that this feature may as well affect the uptake of HCAs 

through the intestinal barrier (Zsivkovits et al., 2003). 
 

3.4.2.2 Formation of direct-acting hydroxy-derivates 

In 1987, Bashir et al. (1987) reported that incubation of IQ with human fecal microbiota 

results in the formation of the stable hydroxy-metabolite 2-amino-3,6-dihydro-3-methyl-7H-

imidazo[4,5-f]quinoline-7-one (7-OH-IQ). This compound was subsequently detected in 

human feces following consumption of fried meat (Van Tassel et al., 1990). Carman et al. 

(1988) showed that this metabolite is formed by Eubacterium and Clostridium strains, the 

most effective producer identified in human feces being Eubacterium moniliforme. Recent 

research identified 10 bacterial strains able to perform the IQ to 7-OH-IQ transformation: 

Bacteroides thetaiotaomicron (n = 2), Clostridium clostridiiforme (n = 3), Clostridium 

perfringens (n = 1) and Escherichia coli (n = 4) (Humblot et al., 2005). 7-OH-IQ is a very 

potent direct acting mutagen in the Salmonella typhimurium strain TA98, whereas a negative 

result was obtained in the SOS Chromotest (Carman et al., 1988; Van Tassel et al., 1990). It 

was hypothesized that similar metabolites might also be formed from other structurally 
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related amines (Carman et al., 1988) and indeed a hydroxy-metabolite of MeIQ could be 

isolated (Van Tassel et al., 1990). Till 1994, evidence for mutagenic effects of the bacterial 

metabolites was restricted to results obtained in Salmonella/microsome assays. The first data 

from experiments with mammalian cells came from Weisburger (1994), who carried out 

DNA-repair assays with 7-OH-IQ in primary rat hepatocytes. Under all conditions of test 

negative results were obtained. The same report contains the results of carcinogenicity studies 

with male F344 rats and newborn CD-1 mice. The rats were treated intrarectally either with 

IQ or with the hydroxy-derivative, the mice were treated by intra-peritoneal injection 

followed by long-term dietary supplementation. In the IQ groups and this was true both for 

the rats and the mice, pronounced induction of colon tumors was found, whereas no such 

effect was seen in the 7-OH-IQ groups. The authors concluded that the presence of 7-OH-IQ 

in the intestinal tract of humans on a Western diet is unlikely to account for an increased 

colon cancer risk in individuals consuming IQ and related amines. 

 

3.4.2.3 Formation of indirect-acting mutagens of HCAs 

An important detoxification pathway for HCAs is the conjugation with glucuronic acid, 

which takes place mainly in the liver. These glucuronidated derivates are partly excreted via 

the bile into the digestive lumen. It has been hypothesized that representatives of the intestinal 

microbiota might hydrolyze glucuronide conjugates of HCAs. Alexander et al. (1991) 

incubated primary rat hepatocytes with PhIP and found that one of the major metabolites 2-N-

ß-D-glucuronopyranosyl-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine is 

splitted by ß-glucuronidase. Recently, Humblot et al. (2007) constructed a β-glucuronidase-

deficient isogenic mutant from a wild-type E. coli strain carrying the gene uidA encoding this 

enzyme and compared the genotoxicity of IQ in gnotobiotic rats monoassociated with the 

wild-type or the mutant strain. The comet assay performed on colonocytes and hepatocytes 

showed that the presence of β-glucuronidase in the digestive lumen dramatically increased (3-

fold) the genotoxicity of IQ in the colon. These results clearly indicate that bacterial β-

glucuronidase plays a pivotal role in the ability of IQ to induce DNA damage in colonocytes. 

Moreover, they are consistent with observations suggesting that IQ cannot induce DNA 

damage in the colonocytes of germ-free rodents (Hirayama et al., 2000; Kassie et al., 2001) 

and help to elucidate the chemoprotective effects of dietary compounds capable of lowering 

β-glucuronidase activity in the colon (Humblot et al., 2004). One might speculate whether the 

central role of β-glucuronidase in the colonic genotoxicity of IQ may apply to other HCAs, 
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since this family includes molecules with very diverse chemical structures. Ligation of the 

biliary duct in rat does not alter the genotoxic effect of PhIP (Kaderlik et al., 1994), 

suggesting that the involvement of bacterial β-glucuronidase in the metabolic fate of PhIP has 

no influence on its bioactivity. Hirayama et al. (2000) investigated the effect of human 

intestinal microbiota on DNA adducts induced by 2-amino-9H-pyrido[2,3-b]indole and found 

a higher level of damage in germ-free mice than in mice with microbiota. Therefore, the 

impact of β-glucuronidase would vary depending on the animals’ exposure to different 

chemicals. This could arise from different susceptibilities of HCA glucuronoconjugates to β-

glucuronidase hydrolysis. For example, Styczynski et al. (1993) showed that PhIP 

glucuronide originating from conjugation by human enzymes was a substrate for bacterial β-

glucuronidase, whereas PhIP-glucuronide from rabbit did not undergo β-glucuronidase-

catalyzed hydrolysis. 
 

4. HCA mutagenesis and carcinogenesis 

4.1. DNA binding of HCAs 

HCAs must be metabolically activated to N-hydroxy-HCA derivates and undergo phase 

II conjugation to form N-acetoxy or N-sulfonyloxy esters to obtain their genotoxic activity. 

These highly reactive esters may undergo heterolytic cleavage to generate the nitrenium ion, 

which represents the ultimate carcinogenic species (Kato, 1986). The major DNA adducts 

formed with these reactive esters occur at the C-8 position of deoxyguanosine (dG) (Figure 

1.9) (Turesky, 2002). In addition to these dG-C8-HCA adducts, a second adduct was reported 

to form at the N2 position of dG and the C-5 atoms of IQ and MeIQx, indicating charge 

delocalization of the incipient nitrenium ion at this location (Turesky, 2002). These dG-HCA 

adducts are believed to be responsible for the mutagenicity of HCAs. 

 

Conformational changes in DNA are induced by aromatic amine-purine base 

modifications and are important determinants of the adduct’s biological activity and 

propensity to provoke base pair deletions and substitutions during translesional synthesis of 

DNA (Beland and Kadlubar, 1985). The conformation of the glycosidic linkage of the 

carcinogen adducted to DNA is also an important factor in adduct persistence (Beland and 

Kadlubar, 1985). Adducts that preferentially exist in the syn form may induce a greater 

distortion of the DNA helix at the site of carcinogen adduction than adducts that exist in the 
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normally occurring anti form of DNA, resulting in more facile recognition and enzymatic 

removal of the adduct (Beland and Kadlubar, 1985).  
 

 
 

Figure 1.9 DNA adducts of several HCAs. The dG-C8 adducts have been drawn in the 

syn conformation and the dG-N2 adducts are present in the anti conformation 

(after: Turesky, 2002). 

 

The increased frequency of base pair deletions that occurs in DNA modified with aromatic 

amines and HCAs, particularly when G or T is present at the 5’ flanking position of the 

modified base may also be explained by adducts existing in the syn conformation. The 
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structural alterations induced by the DNA adduct may allow the formation of a frameshift 

intermediate, resulting in deletion of a base pair during translesional synthesis. More recently, 

the solution structure of dG-C8-PhIP adduct present as an 11-mer duplex was reported and 

the dG-C8-PhIP lesion was observed to exist in the syn form, which may help to explain the 

biological effects of this mutagen (Brown et al., 2001). 
 

4.2. Bacterial mutagenicity  

The Ames mutagenicity assay, developed in the 1970s (Ames, 1973) was the first test 

used to assess the in vitro genotoxicity of HCAs in prokaryotic cells. Requirement for 

metabolic activation of HCAs led to modification of the method to incorporate a liver extract, 

conventionally called S9 mix (Sugimura, 1997). IQ, 8-MeIQx and MeIQ are amongst the 

most potent bacterial mutagens ever tested in the Ames assay employing several strains of 

genetically modified Salmonella typhimurium (Sugimura and Sato, 1983). Other HCAs, 

including PhIP and AαC are respectively, 200- and 1000-fold weaker in potency (Table 1.8). 

 

Many of these HCA-DNA lesions can be repaired since the mutagenic potencies of 

several HCAs are 100-fold less active in the uvrB+ proficient Salmonella typhimurium strain 

(Felton et al., 1994b). HCAs preferentially induce frameshift mutations in Salmonella 

typhimurium, but point mutations also occur (Sugimura, 1997). The high response in 

frameshift mutations in the Salmonella typhimurium strains TA98 and TA1538 is attributed to 

a preference for some HCAs to react about 9 base pairs upstream of the original CG deletion 

in the hisD+ gene in a run of CG repeats (Fuscoe et al., 1988). This "hotspot" is consistent 

with the presence of dG-HCA adducts, which may lead to CG deletions during translesional 

DNA synthesis. The relatively high potency of several HCAs in the Ames assay may also be 

attributed to the O-acetyltransferase (OAT) enzyme expressed in Salmonella typhimurium. 

OAT efficiently activates the promutagenic N-hydroxy-HCAs produced by exogenously 

added P450 enzymes to form the highly reactive N-acetoxy intermediates, which readily bind 

to DNA within the cell. Consistent with this observation, the mutagenic potencies of several 

HCAs, including IQ and MeIQx, which are activated by OAT are significantly diminished in 

Salmonella typhimurium TA98/1,8DNP6, a strain deficient in OAT (McCoy et al., 1983). 

Conversely, the Salmonella typhimurium tester strain YG1024, which contains elevated levels 

of OAT is significantly more sensitive to the genotoxic effects of several HCAs activated by 

this enzyme (Watanabe et al., 1990). 
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Table 1.8. Mutagenicity of HCAs in Salmonella typhimurium TA98 and TA100 with S9. 

Revertants/µg 
HCA 

TA98 TA100 
MeIQ  661000 30000 
IQ  433000 7000 
DiMeIQx  183000 8000 
7,8-DiMeIQx  163000 9900 
MeIQx  145000 14000 
Trp-P-2  104200 1800 
4-CH2OH-8-MeIQx  99000 3000 
IQx  75400 1500 
Glu-P-1  49000 3200 
Trp-P-1  39000 1700 
Glu-P-2  1900 1200 
PhIP 1800 120 
AαC 300 20 
MeAαC 200 120 

 

The mutagenicity of HCAs in other bacterial genes such as the lacZ, lacZa and lacI of 

E. coli also reveal that mutations occur primarily at GC pairs. Other studies have examined 

the genotoxicity of aromatic amines and HCAs in E. coli that have been genetically 

engineered to simultaneously express human P4501A2, NADPH cytochrome P450 reductase 

and N-acetyltransferase. Consequently, the bioactivation of HCAs occurs within the cell, 

rather than extracellular as occurs with exogenously added liver S-9 homogenates or P450 

preparations. Thus, the chemically reactive metabolites are in close proximity to the target 

gene, which enhances the sensitivity of the mutagenicity assay (Josephy et al., 1998).  

 

Other bacterial systems have used the induction of the SOS response in Salmonella 

typhimurium NM2009 as a measure of DNA damage induced by HCAs; this system possesses 

high OAT activity and contains a umuC regulatory sequence attached to the lacZ reporter 

gene. More recently, these strains have been modified to express human P450 enzymes, 

NADPH-cytochrome P450 reductase and OAT (Oda et al., 2001). These tester strains are 

highly sensitive towards some HCAs and have the advantage of being simple and fast, where 

data are generated within several hours. Yamazaki et al. (2004) newly developed 10 

Salmonella typhimurium TA1538 strains each co-expressing a form of human cytochrome 

P450 together with NADPH-cytochrome P450 reductase, of which CYP1A1 and 1A2 were 

responsible for the mutagenic activity of PhIP.  
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4.3. Mutagenicity in mammalian cells in vitro 

Several types of mammalian cells have been used to derive information relating to the 

mutagenicity of HCAs in eukaryotic cells. For some HCAs, completely different results were 

obtained. This is exemplified by PhIP, which in bacterial cells exhibited a weak mutagenicity 

unequal to that observed in eukaryotic cells (Turesky, 2002). The discrepancies in biological 

potencies of these in vitro assays are due to different exogenous and endogenous metabolic 

activation systems, gene loci endpoints, base sequence contexts and neighboring base effects 

on the HCA-DNA lesions, which may affect mutation frequencies. The mutagenic potencies 

of HCAs can be dramatically increased in mammalian cells genetically engineered to express 

phase II enzymes, such as NAT2 or SULT1A1, which are involved in HCA bioactivation 

(Glatt et al., 2004). 

 

In mammalian cells, base pair substitutions at guanine are prominent mutations; however, 

frameshift mutations at guanine also occur, depending upon the base sequence context. These 

mutational events are consistent with the notion that guanine is the principal target for HCA-

DNA adduct formation (Schut and Snyderwine, 1999). The PhIP-induced mutations at the 

hprt locus in human lymphoblastoid cells have been reported to occur predominantly through 

GC→TA transversions (Morgenthaler and Holzhauser, 1995). GC → TA transversions have 

also been observed at PhIP-induced mutants in the dhfr genes of Chinese hamster ovary cells 

(Carothers et al., 1994). PhIP was also shown to predominantly produce GC→TA 

transversions at the hprt locus in Chinese hamster V79 cells; however, 13% of the mutants 

displayed a -1G frameshift mutation in the 5’-GGGA-3’ sequence (Yadollahi-Farsani et al., 

1996).  
 

4.4. Mutagenicity in vivo, activation of oncogenes and inactivation of 

tumor suppressor genes  
There have been several studies conducted on HCA-induced mutations in transgenic 

animals. PhIP was reported to induce a number of one-base deletions in the lacI gene of the 

colon mucosa of the transgenic Big Blue mice and Big Blue rats (Okonogi et al., 1997a; 

1997b). The characteristic guanine deletion at 5’-GGGA-3’ reported in the apc gene of rat 

colon cancers induced by PhIP (Nagao et al., 1996) accounted for 7 and 10% of the total 

mutations of this lacI gene in each of these experimental animal models. This mutation was 

also observed in mammary glands of female Big Blue rats treated with PhIP, where 6% of the 
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mutations displayed a GC base pair deletion at the 5’-GGGA-3’ site (Okochi et al., 1999). 

PhIP was also reported to induce GC → TA transversions and -1G frameshifts of GC in lacI 

gene of prostate of Big Blue male rats (Stuart et al., 2000).  
 

A number of genetic alterations have been reported in experimental animals during 

long-term feeding studies with HCAs (Nagao and Sugimura, 1993; Sugimura et al., 1996; 

1997 and references therein). Some of the genetic alterations are summarized in Table 1.9.  

 

Table 1.9. Genetic alterations in tumors induced by HCAs (after: Turesky, 2002). 

Genetic alterations 
Species HCA 

Ha-ras Ki-ras N-ras p53 apc β-catenin MM 

Colon         

  F344 rats Glu-1-P 0/7 1/7 0/6 0/7    
  F344 rats IQ 0/11 0/11 0/11 0/11 2/13 5/5  
  F344 rats PhIP 0/9 0/9 0/9 0/9 4/8 4/7 7/8 

Mammary gland         

  F344 rats PhIP 3/17 0/12 0/12 1/10  0/23  
  SDxF344 F1 rats PhIP       9/15 

Liver         

  F344 rats MeIQx    3/13    
  CDF1 mice IQ 7/34       

Lung         

  CDF1 mice IQ  49/54      

Forestomach         

  CDF1 mice MeIQ 22/64   6/8    

Zymbal gland         

  F344 rats IQ 4/7, 5/9 3/9  4/16    
  F344 rats MeIQ 9/15       
  F344 rats MeIQx 2/6       
MM = Microsattelite mutations. 
 

Genetic alterations in rat colon adenocarcinomas induced by IQ, PhIP and the glutamic 

acid pyrolysate mutagen Glu-P-1 were examined for ras family gene mutations. The Ki-ras 

mutations were rare and no mutations were detected in either the N-ras or Ha-ras genes for 

any of these tumors. Similarly, p53 gene mutations were not detected in any rat colon tumors 

induced by these HCAs even though 60-70% of human colon cancers have mutations in the 

p53 gene (Nagao et al., 1996). Therefore, HCAs may represent suitable model compounds for 
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investigations in sporadic colon carcinogenesis, which do not involve mutations in the p53 

gene. However, mutations in either Ha-ras or Ki-ras and the p53 genes were found in rat 

Zymbal gland tumors induced by IQ (Nagao and Sugimura, 1993 and references therein). IQ 

was also reported to induce mutations in the p53 gene in 4 of 20 nonhuman primates that 

developed hepatocellular carcinoma during long-term feeding studies; three of the mutations 

contained GC → TA transversions and one possessed a GC → AT transition (Nagao et al., 

1997). The apc gene plays a major role in human colon carcinogenesis and is considered as an 

initial or very early event in human colon carcinogenesis.  

 

Alterations of the apc gene were more prominent in PhIP-induced than in IQ-induced 

rat colon carcinogenesis (Kakiuchi et al., 1995). Four of the eight colon tumors caused by 

PhIP had mutations in the apc gene and featured a guanine deletion from 5’-GGGA-3’ 

sequences. Moreover, the specific GC base pair deletion in 5’-GTGGGA-3’ at codon 635 of 

the apc gene was detected as an early mutation in colon of male rats exposed to PhIP for only 

one week when probed by the mismatch amplification mutation assay (Burnouf et al., 2001). 

One of the hotspots of PhIP-induced mutation at the 5’-GTGGGA-3’ sequence around codon 

635 in the rat is conserved in the human apc gene and may be a signature mutation of this 

HCA (Sugimura et al., 2004). In contrast to PhIP, mutations in the apc gene of IQ-induced 

colon tumors were detected in only two of 13 tumors and there were no specific and 

characteristic mutations (Kakiuchi et al., 1995). 
 

4.5. Carcinogenicity in experimental animals  

Carcinogenicity of HCAs has been well documented in a wide range of organs/tissues 

in long-term animal studies and this led to the classification of eight HCAs (MeIQ, MeIQx, 

PhIP, Trp-P-1, Trp-P-2, AαC, MeαC and Glu-P-2) by IARC as possible (group 2B) and IQ as 

probable human carcinogen (group 2A). HCAs induce tumors at multiple organs including 

liver, lung, hematopoietic system, forestomach and blood vessels in mice, and colon, small 

intestine, prostate, mammary gland, hematopoietic system, liver, Zymbal gland, skin, clitoral 

gland, oral cavity and urinary bladder in rats (Ito et al., 1997; Shirai et al., 1997; Norrish et 

al., 1999; Sugimura et al., 2004; Knize and Felton, 2005). The TD50 values and targets sites 

of HCAs in rats and mice are presented in Table 1.10.  
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Table 1.10.  Carcinogenicities of HCAs (after: Turesky, 2002; Sugimura et al., 2004).  

Chemical Species 
Dose (%) 

in diet 
Target Organs 

TD50 

(mg/kg b.w./day) 

Trp-P-1 Rats 0.015 Liver 0.1 

 Mice 0.02 Liver 8.8 

Trp-P-2 Rats 0.01 Liver, urinary bladder - 

 Mice 0.02 Liver 2.7 

Glu-P-1 Rats 0.05 
Liver, small and large intestines, 

Zymbal gland, clitoral gland 
0.8 

 Mice 0.05 Liver, blood vessels 2.7 

Glu-P-2 Rats 0.05 
Liver, small and large intestines, 

Zymbal gland, clitoral gland 
5.7 

 Mice 0.05 Liver, blood vessels 4.9 

AαC Rats 0.08 No tumors - 

 Mice 0.08 Liver, blood vessels  

MeαC Rats 0.02, 0.01 Liver 6.4 

 Mice 0.08 Liver, blood vessels 5.8 

IQ Rats 0.03 
Liver, small and large intestines, 

Zymbal gland, clitoral gland, skin 
0.7 

 Mice 0.03 
Liver, forestomach, lung, large 

intestine 
14.7 

MeIQ Rats 0.03 
Zymbal gland, Large intestine, 

mammary gland, skin, oral cavity 
0.1 

 Mice 0.04, 0.01 Liver, forestomach 8.4 

MeIQx Rats 0.04 
Liver, Zymbal gland, clitoral gland, 

skin 
0.7 

 Mice 0.06 Liver, lung, hematopoietic system 11.0 

PhIP Rats 0.04 
Large intestine, mammary gland, 

prostate, lymphoid tissue 
2.2 

 Mice 0.04 Small intestine, lymphoid tissue  64.4 

 

There is particular interest in breast, colon and prostate tumors, as several 

epidemiological studies have revealed that frequent consumption of cooked foods containing 

these HCAs are associated with elevated cancer risk in these organs (Ito et al., 1991; Willet, 

1995; Shirai et al., 1997; Snyderwine et al., 2002). Macroscopic and histological features of 

some HCA induced tumors are shown in Figure 1.10 and Figure 1.11. 
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Figure 1.10  Macroscopic features of HCA-induced cancers in experimental animals. (A–C) 

Rat colon cancers induced by IQ (A), PhIP (B) and Glu-P-1 (C), respectively. 

(D and E) Liver cancers induced by MeIQx in rat (D) and by IQ in monkey 

(after: Sugimura et al., 2004). 

 

 
Figure 1.11 Histological features of PhIP-induced colon, prostate and mammary gland 

cancers in rats. (A) Colon cancer, (B) prostate cancer, (C) mammary gland 

cancer (after: Sugimura et al., 2004). 

 

Several studies have investigated the combined effects of HCAs in 

hepatocarcinogenesis. On the basis of preneoplastic foci induction by 10 HCAs, some HCAs 

may act in a synergistic manner and increase the effects observed over single compounds 

tested alone in the rat (Hasegawa et al., 1996). Synergistic effects were also observed in the 

A C B 
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small intestine and Zymbal gland, but not in other organs (Hasegawa et al., 1994) Therefore, 

the synergism depends on the target tissue of the individual HCAs as well as the doses 

applied in combination. These findings may have relevance to humans since a number of 

HCAs are present in the diet and consumed simultaneously. 

 

IQ, MeIQx and PhIP were assayed for carcinogenicity in cynomolgus monkeys 

(Adamson, 2000). IQ was reported to be a potent hepatocellular carcinogen inducing tumors 

in 70% of the monkeys at a dose of 10 mg/kg body weight and 100% of the monkeys at 20 

mg/kg dose treated five times per week. MeIQx was also administered at both 10 and 20 

mg/kg body weight but no evidence of neoplastic or preneoplastic lesions in any organs was 

observed. The striking difference in biological activity between these two structurally related 

HCAs may be attributed to the poor bioactivation of MeIQx in this species, which does not 

constitutively express hepatic P4501A2. Bioassays with PhIP were also conducted with the 

same dosing regimen. Pathological abnormalities attributed to PhIP were not observed 

(Adamson, 2000). Monkey liver was reported to activate PhIP to the genotoxic N-

hydroxylamine metabolite and the isomeric N-glucuronide conjugates of 2-(hydroxyamino)-

1-methyl-6-phenylimidazo[4,5-b]pyridine were detected in bile and urine of monkeys 

(Snyderwine et al., 1997). Furthermore, significant levels of PhIP-DNA adduct formation 

were detected in liver and extrahepatic tissues (Snyderwine et al., 1997). These biochemical 

data suggest that PhIP would be carcinogenic to this species if treated with the appropriate 

dose for a sufficient length of time (Adamson, 2000). 

 

4.6. DNA adducts in humans 

Several HCA-DNA adducts have been detected in human tissues. A GC-MS assay, 

based upon alkaline hydrolysis of putative dG-C8-HCA adducts to produce the parent HCAs, 

revealed the presence of PhIP in colorectal mucosae of several individuals at levels of up to 

several adducts per 108 DNA bases, when 100 µg DNA was used for analysis (Friesen et al., 

1994). Another study detected a base-labile adduct of PhIP, presumably dG-C8-PhIP, in long-

lived lymphocytes of colorectal cancer subjects at levels of several adducts per 108 DNA 

bases, when 100 µg DNA was measured (Magagnotti et al., 2003). This putative adduct was 

detected in about 30% of the population and the levels of adduct varied across a 10-fold range 

between the lowest and highest level, suggesting a different intake of PhIP or interindividual 

variation in bioactivation of PhIP. Two studies have reported the detection of DNA adducts of 
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PhIP in human breast tissue. The dG-C8-PhIP adduct was detected in exfoliated epithelial 

cells from milk of lactating mothers in 30 of the 64 samples analyzed, with a mean value of 

4.7 adducts/107 nucleotides, through use of the 32P-postlabeling method (Gorlewska-Roberts 

et al., 2002). In another study, PhIP adducts, presumably dG-C8-PhIP, were detected, by an 

immunohistochemical method, in human breast tissues at levels of >1 adduct per 107 bases, in 

82 and 71% of the normal breast tissue sections from the cancer and control patients, 

respectively (Zhu et al., 2003).  

 

The dG-C8-MeIQx adduct was also detected in colon and kidney DNA of several 

individuals at levels estimated up to several adducts per 109 DNA bases, by means of the 32P-

postlabeling assay (Totsuka et al., 1996). The identities of the DNA adduct structures 

reported in these studies are equivocal. With the recent advances in the sensitivity of 

electrospray ionization mass spectrometry (LC-ESI/MS) instrumentation, it should be feasible 

to unambiguously characterize and quantitate HCA-DNA adducts in humans tissues at levels 

of modification of ∼1 adduct per 108 DNA bases (Turesky and Vouros, 2004; Turesky, 2007). 

 

4.7. Strategies to inhibit genotoxic and carcinogenic effects from HCAs 

At present, data are available on approximately 600 individual compounds and complex 

mixtures that exhibit antimutagenic/anticarcinogenic effects towards HCAs. Complex 

mixtures include beverages, juices and homogenates from fruits and vegetables, spices and 

lactic acid bacteria. The individual compounds that were tested for protective properties are 

mainly plant-derived substances.  

 

Many compounds and complex mixtures act in parallel at different levels. A typical 

example are green teas. Their chemopreventive properties towards HCAs include multiple 

mechanisms such as inhibition and induction of enzymes involved in the biotransformation of 

HCAs, scavenging of electrophilic metabolites and radicals and degradation of DNA reactive 

molecules (Dashwood, 2002). A schematic overview of the different modes of action that 

may lead to antimutagenic/anticarcinogenic effects and the most important compounds or 

mixtures known to exert these effects are listed in Table 1.11. 
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Table 1.11. Mechanisms of antimutagens and anticarcinogens. 

Mechanism Examples References 
Direct inactivation by 
binding and chemical 
reactions 

Chlorophyllin and other pyrolle pigments; 
α-cellulose and fibers; 
Bacteria and their cell walls; 
Unsaturated fatty acids  

Hernaez et al., 1997; 
Waters et al., 1996 
Sugiyama et al., 2002; 
Kato et al., 1991; 
Kestell et al., 2004 
Knasmüller et al., 2001 
Hayatsu et al., 1988 
Sreekumar and Hosono, 2001 
 

Enzymatic destruction Peroxidases (myelperoxidase, 
lactoperoxidase, horseradish peroxidase, 
superoxide dismutase) 
 

Hiramoto et al., 1988 

Inhibition of NADPH-
cytochrome c reductase 

Teas (green, black and decaffeinated) Bu-Abbas et al., 1996 
Hasaniya et al., 1997 
 

Inhibition of 
CYP1A1/1A2 activity 

Oleic acid; 
Flavonoids; 
Anthraquinones and anthraflavic acid; 
Phenethyl isothiocyanate; 
Retinol, β-carotene and α-tocopherol 

Saito et al., 1983 
Bacon et al., 2003 
Bear and Teel, 2000 
Edenharder et al., 1998; 2002 
Ferrer et al., 2004 
Mori et al., 2005 
Montgomery et al., 2002 
 

Reversion of the 
hydroxylamine to the 
parent compound 
 

2,6-di-tert-butyl-8-hydroxy-di-
benzofuran-1,4-quinone 

Mizuno et al., 1989 

Direct inactivation of 
N-hydroxy-HCAs 

Chlorophyllin and other pyrolle pigments; 
Epigallocatechin gallate;  
Constituents of beverages 

Hayatsu et al., 1988 
Hernaez et al., 1997 
Arimoto-Kobayashi et al., 
1999; 2006 
 

Induction of GST Cafestol/kahweol palmitates and BITC; Huber et al., 1997; 2004 
 

Inhibition of               
N-acetylation (NAT) 

Epigallocatechin gallate;  
Cafestol/kahweol palmitates 

Hernaez et al., 1997 
Huber et al., 2004 
 

Induction of MDR 
 

Trifluoropertrazine Ferguson and De Flora, 2005 

Induction of 
glucuronidation 
 

Teas  Santana-Rios et al., 2001 

Interaction with DNA-
repair/replication 
 

Caffeine/vanillin/coumarin; 
GeO2 and CoCl2 

Sanyal et al., 1997 
Kada et al., 1998 

Interaction with post-
initiation processes 

Epigallocatechin gallate; 
White, green tea and caffeine 

Cao and Cao, 1999 
Carter et al., 2007 
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5. Objectives of this research 

In the last decades, evidence has accumulated that heterocyclic aromatic amines 

(HCAs), pyrolysis products of amino acids contained in meat and fish products, might play an 

important role in the etiology of several types of human cancers and strong efforts have been 

made to elucidate the metabolism and health hazards of these compounds. So far, most 

investigations focused on the activation and detoxification of HCAs by mammalian enzymes 

and several hundred biochemical studies have been carried out with mammalian cells, 

laboratory rodents, non human primates and man, whereas at the start of this research only a 

few, partly conflicting results from studies with lactobacilli and intestinal microorganisms 

were available. Informations on the bacterial metabolism of native heterocyclic amines were 

scarce and limited to some studies on the quinoline type heterocyclic amines IQ and MeIQ.  

 

To the best of our knowledge, the aspect of microbial bioactivation potential for the 

pro-carcinogenic heterocyclic amine PhIP, has not yet been studied in depth. Therefore, the 

main objective of this work was to explore the possible role of the human intestinal 

microbiota in the metabolism and biological activity of PhIP. To do this, an integrated in 

vitro-in vivo approach has been programmed, combining fecal incubations, human studies and 

mammalian cell lines. 

 

Subsequent to Chapter 1, which constitutes the overall scientific platform, the outline 

of the research can be summarized as follows: 

 

Chapter 2 describes a first explorative study in which the in vitro metabolism of PhIP 

using batch cultures from human fecal samples is investigated. The most important finding of 

this study, i.e. the formation of one major PhIP derivate PhIP-M1 by the human intestinal 

microbiota, is then further explored in batch with focus on interindividual variability. Using a 

combination of LC-MS/MS, HRMS, 1D (1H, 13C, DEPT) and 2D (gCOSY, gTOCSY, 

gHMBC, gHSQC) NMR and IC analysis the complete chemical identity of the microbial 

PhIP metabolite is elucidated. 

 

Chapter 3 describes the development and optimization of an analytical method using 

liquid chromatography tandem mass spectrometry for the detection and quantification of PhIP 

and its newly identified microbial metabolite PhIP-M1in human urine and fecal samples. This 
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method is subsequently applied on urine and feces samples from 6 human subjects that were 

fed 150 g of well-done chicken. In addition, the mutagenic activity of PhIP is analyzed using 

the Salmonella typhimurium strains TA98, TA100 and TA102. 

 

Chapter 4 presents the isolation and identification of individual intestinal bacteria from 

human feces capable of transforming PhIP into its microbial derivate PhIP-M1. 

Representative culture collection strains isolated from the intestine are screened for their PhIP 

transformation potential and the nutritional requirements for microbial PhIP-M1 formation 

are clarified. In addition, the microbial and chemical mechanisms for this carcinogenic 

transformation are elucidated. 

 

Chapter 5 focuses on the biological activity of the newly identified PhIP-M1 derivate. 

Using the epithelial intestinal Caco-2 cell line, the cytotoxic, apoptotic and genotoxic effects 

originating from PhIP-M1 are assessed. These cells were chosen as target since the exposure 

site to PhIP-M1 is the colon and because the colon is known to be one of the main target 

tissues for PhIP induced cancer.  

 

Chapter 6 reports that supplementation of inulin, an extensively studied prebiotic 

compound, can also exert chemopreventive effects. More in particular, it will be shown that 

the PhIP bioactivation potency of the colon microbiota is largely inhibited by the indirect 

metabolic effects that inulin supplementation purports in the colon lumen. 

 

Chapter 7 gives a general discussion of the different research chapters and delivers 

some take home messages. Additionally, some future research recommendations will be 

formulated. 
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CHAPTER 2CHAPTER 2   
 

In vitro metabolism of the food associated carcinogen 2-amino-1-

methyl-6-phenylimidazo[4,5-b]pyridine by human intestinal 

microbiota 
 

ABSTRACT 

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine is a putative human carcinogenic 

heterocyclic aromatic amine formed from meat and fish during cooking. Although the 

formation of hazardous PhIP metabolites by mammalian enzymes is well documented, 

nothing is known about the PhIP transformation potency of human intestinal bacteria. In this 

study, the in vitro metabolism of PhIP by human fecal samples was investigated. Following 

anaerobic incubation of PhIP with stools freshly collected from six healthy volunteers, we 

found that PhIP was extensively transformed by the human intestinal bacteria. HPLC analysis 

showed that the six human fecal microbiota transformed PhIP with efficiencies from 47 to 

95% after 72 h incubation, resulting in one major derivative. ESI-MS/MS, HRMS, 1D (1H, 
13C, DEPT) and 2D (gCOSY, gTOCSY, gHMBC, gHSQC) NMR and IC analysis elucidated 

the complete chemical identity of the microbial PhIP derivate, as 7-hydroxy-5-methyl-3-

phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride. At 

present, no information is available about the biological activity of this newly discovered 

bacterial PhIP metabolite. Our findings however suggest that bacteria derived from the human 

intestine play a key role in the activation or detoxification of PhIP, a digestive fate ignored so 

far in risk assessments. Moreover, the variation in transformation efficiency between the 

human microbiota indicates interindividual differences in the ability to convert PhIP. This 

may predict individual susceptibility to carcinogenic risk from this suspected dietary 

carcinogen.  
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1. Introduction 

 Cooked muscle meats, major components of the Western diet, contain potent genotoxic 

carcinogens belonging to the heterocyclic aromatic amine class of chemical compounds 

(Figure 2.1) (Nagao et al., 1977). Of the 19 heterocyclic amines identified, 2-amino-1-methyl-

6-phenylimidazo[4,5-b]pyridine (PhIP) is frequently the most mass abundant heterocyclic 

amine produced during the cooking of beef, pork and chicken (Murray et al., 1993; Sinha et 

al., 1995; Skog et al., 1997; Zimmerli et al., 2001; Wong et al., 2005; Busquets et al., 2007). 

The highest levels of PhIP can be found in grilled or fried meats. In very well-done flame-

grilled chicken up to 480 ng/g PhIP has been measured (Sinha et al., 1995). The human intake 

of PhIP varies with food type and cooking conditions and is estimated to range from 

nanograms to tens of micrograms per day, depending on individual dietary and cooking 

preferences (Felton et al., 1986a; Zimmerli et al., 2001). Assessment studies based on rodent 

tumor data (Ito et al., 1991; Shirai et al., 1997; Norrish et al., 1999; Knize and Felton, 2005) 

and the abundance of PhIP in the diet have indicated that this heterocyclic amine may be a 

risk factor in human colon, breast and prostate carcinogenesis (Imaida et al., 1996; Ito et al., 

1991; 1997; Shirai et al., 1997; Snyderwine, 2002).  

 

 
   PhIP    IQ           MeIQ 
 
Figure 2.1   Chemical structures of heterocyclic aromatic amines. 

 

As a means of determining the potential health risks associated with heterocyclic 

amines, several dietary studies have been conducted on the metabolism and disposition of 

these compounds in humans. So far, most investigations focused on the activation and 

detoxification of heterocyclic amines by mammalian enzymes. The genotoxic/carcinogenic 

effect of heterocyclic amines is closely related to a highly complex metabolism involving 

xenobiotic metabolizing enzymes generating very reactive metabolites as well as detoxified 

derivatives (Aeschbacher and Turesky, 1991). On the other hand, the involvement of the 

intestinal microbiota in the digestive fate of heterocyclic amines remains underinvestigated 
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(Knasmüller et al., 2001). Recent research showed that the amount of PhIP metabolites 

excreted in the 0-24 h urine represented 17 ± 10% of the ingested PhIP in a meat matrix (Kulp 

et al., 2004). In an earlier study with patients given PhIP in a capsule, 90% of the ingested 

dose was recovered in the urine (Malfatti et al., 1999). This indicates that PhIP provided in 

capsule form is more bioavailable than PhIP ingested from meat. The non-bioavailable 

fraction reaches the colon intact to come there into contact with the resident microbiota. 

Direct binding of heterocyclic amines to the cell walls of intestinal bacteria has been reported 

and is currently considered as a detoxification mechanism since it prevents absorption of 

heterocyclic amines through the intestinal mucosa (Bolognani et al., 2001; Turbic et al., 

2002). On the other hand, results of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced 

genotoxicity assays in germ-free and conventional rodents showed that the presence of 

intestinal microbiota is essential for the induction of DNA-damage in the colon and liver cells 

(Hirayama et al., 2000; Kassie et al., 2001). These findings suggest that the intestinal 

microbiota play a significant role in the bioconversion of heterocyclic amines into harmful 

metabolites. Indications exist that hydrolysis of heterocyclic amine-glucuronides by bacterial 

β-glucuronidase may release mutagenic intermediates (Rumney and Rowland, 1992). 

Informations on the bacterial metabolism of native heterocyclic amines are however still 

scarce. Several researchers report that incubation of the heterocyclic amine IQ with mixed 

human feces in anaerobic conditions results in the formation of the hydroxy metabolite 7-OH-

IQ (Bashir et al., 1987; 1989; Carman et al., 1988; Humblot et al., 2005). The bacterial 

metabolism of the heterocyclic amine PhIP has to our knowledge not been investigated yet. 

 

As the biological potency of PhIP-induced carcinogenicity is strongly dependent upon 

its digestive fate, a comprehensive understanding of the metabolism, mammalian, as well as 

microbial of this putative carcinogen, is essential for human risk assessment. Therefore, the 

focus of the present study was to investigate the role of the intestinal microbiota in the 

metabolism of PhIP. Interindividual differences occur with regard to the species composition 

and the metabolic activities of the human intestinal microbiota (Suau et al., 1999). Therefore 

the bioconversion potential of fecal samples collected from different subjects was examined. 

 



Chapter 2 

 52 

2. Material and methods 

2.1. Chemicals 

PhIP was purchased from Toronto Research Chemicals (Ontario, Canada). The 

constituents of the culture media, namely tryptone and yeast extract, were obtained from 

AppliChem (Darmstadt, Germany). All other chemicals were obtained from Sigma-Aldrich 

(Bornem, Belgium). The solvents for HPLC and LC-MS analysis were of HPLC grade and 

purchased from Acros Organics (Geel, Belgium).  
 

2.2. Incubation Conditions 

2.2.1 Collection and preparation of human fecal samples 

Fecal samples were obtained from six healthy subjects (three males and three females) 

between the age of 20 and 35. Donors were on a Western-type diet and none had a history of 

digestive pathology nor had received antibiotics during 3 months prior to sample delivery. 

Fecal slurries of 20% (w/v) fresh fecal inocula were prepared by homogenizing the feces with 

phosphate buffered saline (0.1 M, pH 7), containing 1 g/L sodium thioglycolate as reducing 

agent. The particulate material was removed by centrifugation for 2 min at 500xg.  

 
2.2.2 Incubation 

All incubation experiments were performed in TY broth (tryptone 30 g/L, yeast extract 

20 g/L, L-cysteine 0.5 g/L, pH 7.0). Fecal bacteria require anaerobic conditions (low redox 

potential) for growth. Therefore, resazurin (2 mg/L) was added as a redox indicator. A pink 

color indicated a redox potential higher then -80 mV, a colorless solution showed a redox 

potential below this limit, i.e. anaerobic. The redox potential in the large intestine typically 

ranges between -150 and -280 mV (Jonas et al., 1999). The medium was autoclaved at 121 °C 

for 15 min. Prior to addition to the autoclaved growth medium in the incubation vessels, PhIP 

was dissolved in dimethyl sulfoxide (DMSO). The incubation volume was either 20 mL or 40 

mL. Each batch culture consisted of 90% TY broth medium and 10% fecal inoculum in 

phosphate buffered saline. The batch cultures were added with PhIP dissolved in DMSO to 

give a final concentration of 1, 10, 100, 1000 mg/L and less than 5% DMSO (v/v). Each batch 

was sealed with butylrubber tops and anaerobiosis was obtained by flushing the flasks with 

N2 during 15 cycles of 2 min each at 800 mbar overpressure and 900 mbar underpressure. 
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Cultures were incubated at 37 °C and 150 rpm for the duration of the experiment. Samples 

were taken at regular time intervals using syringes. All experiments were performed in 

triplicate. In order to assess the extent of bacterial transformation, a number of control 

samples were included in the experimental setup. Firstly, undosed fecal cultures were 

analyzed to serve as a negative control as they presumably do not contain PhIP. Secondly, an 

undosed fecal culture was autoclaved for 20 min at 121 °C and added with PhIP to ascertain 

that the disappearance of the substrate could be assigned to the metabolic activity of viable 

cells and not a passive adsorption on bacterial cell walls. 
 

2.3. Chemical Analysis 

2.3.1 Extraction Protocol 

For HPLC and LC-MS analysis the PhIP parent component and its metabolite were 

extracted from the digests (1 mL sample) by performing a solid phase extraction using 

STRATA C18-U cartridges (Phenomenex, Belgium). After centrifugation for 10 min at 7000 x 

g at 4 °C, the resulting supernatant was loaded onto a 200 mg C18-U cartridge preconditioned 

with 3 mL each of acetonitrile, water and ammonium acetate (0.1 mM, pH 3.5). A vacuum 

manifold and an evaporation manifold (Alltech, Lokeren, Belgium) were used for 

manipulations with SPE cartridges and solvent evaporation, respectively. The cartridge was 

washed with 3 mL water and eluted with 3 mL ammonium acetate (0.1 mM, pH 3.5): 

acetonitrile (1:4) (v/v). The eluate obtained was dried under a N2 stream, the residue 

reconstituted in 1 mL ammonium acetate (0.1 mM, pH 3.5):acetonitrile (1:4) (v/v), transferred 

into HPLC vials, and stored at 4 °C until analysis. The recovery of PhIP and its microbial 

metabolite using the latter protocol was determined in fecal digests at two concentrations, 1 

and 100 mg/L and gave recoveries of 95 ± 1.3% for PhIP and its microbial metabolite. To 

further improve the recovery, DMSO (1.5%) was added to the ammonium acetate and 

acetonitrile mixture since DMSO is a very good solvent for PhIP. Although the recovery was 

better than using the ammonium acetate and acetonitrile mixture (approximately 99%), the 

evaporation of DMSO was difficult and, therefore, unsuitable for larger sample volumes or 

greater numbers of samples. For preparative separation and subsequent spectroscopic analysis 

the PhIP metabolites were extracted from the digests (40 mL sample) using a liquid-liquid 

extraction procedure. Prior to extraction the pH of the samples was adjusted to 9-10 with 10 

mL 1 M Na2CO3. After extraction into ethyl acetate (3 x 25 mL), the samples were 
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centrifuged, and the combined organic phases were extracted with 3 x 25 mL 0.1 M HCl. 

PhIP and metabolites were recovered from the acidic solution by addition of 12.5 mL 1 M 

Na2CO3 and extraction with ethyl acetate (3 x 50 mL). After centrifugation and separation 

over a funnel to remove any remaining aqueous phases, the samples were taken to dryness at 

50 °C by rotary evaporation.  

 

2.3.2 Analytical HPLC  

Samples were analyzed on a Dionex HPLC system (Sunnyvale, California, USA) 

comprising an autosampler ASI-100, a pump series P580 and a STH585 column oven, 

coupled to a UVD340S UV/VIS detector and a RF-2000 fluorescence detector. A 10 µL 

volume of the sample was injected and separated over a 150 x 4.6 mm i.d., 4 µm, Genesis C18 

column  (Jones Chromatography, UK). The temperature was set at 25 °C and the flow rate 

was maintained at 1 mL/min. Solvents were 0.01% formic acid (A) and acetonitrile (B). 

Solvent programming was isocratic 2% B during 2 min followed by a linear gradient to 40% 

B in 20 min. Absorbance was monitored at 315 nm; fluorescence was monitored at 316 nm 

(excitation) and 370 nm (emission). Data were collected and peaks integrated using the 

Chromeleon chromatography manager software (Dionex). Identification of PhIP was based on 

the identity of the retention time and the absorption spectrum with those of an authentic 

standard (Research Chemicals Inc.) and quantification was achieved using a standard curve 

from 1 ng/mL to 100 µg/mL. The detection limit for quantification of PhIP was 1 ng/mL for 

fluorescence and 1 µg/mL for absorbance detection, based on the criterion that the signal to 

noise ratio should be > 3 for quantification purposes. Relative productions of the microbial 

PhIP metabolite over time and between samples could be compared by integrating the peak 

areas. Quantification of the PhIP metabolite was achieved using a standard curve obtained 

after preparative separation and purification of the metabolite. 

 
2.3.3 LC-MSn 

The HPLC apparatus comprised of a P4000 quaternary pump and an AS3000 

autosampler (Thermo Finnigan, San Jose, CA, USA). Chromatographic separation was 

achieved using a 150 x 3 mm i.d., 5 µm, Zorbax SB-C3 column obtained from Agilent 

Technologies (Diegem, Belgium). The mobile phase consisted of a mixture of acetonitrile (A) 

and water with 0.01% formic acid (B). A linear gradient was run from 2% A for 2 min, 

increasing to 40% A over 20 min and maintaining 40% A for 8 min, and finally increasing to 
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100% A in the minute at a flow rate of 0.3 mL/min. The analysis was performed using a LCQ 

Deca ion trap mass spectrometer (Thermo Finnigan, San Jose, CA, USA) equipped with an 

Electrospray Ionisation (ESI) interface. Both positive and negative ion modes were used but 

only the positive ion mode allowed observing PhIP and metabolite peaks. To perform MS2
 

and MS3, the precursor isolation width was set to 2 Da, the activation Q to 0.35 and the 

collision energy to 45%.  

 
2.3.4 Preparative HPLC  

Preparative separation was performed on a Gilson preparative HPLC system (Gilson 

International B.V., Middleton, United States) comprising a H322 pump system and a 206 

fraction collector, coupled to a model 156 UV/VIS detector. Chromatographic separation was 

achieved using an Omnisphere 250 x 21.4 mm i.d., 10 µm, C18 column obtained from Varian 

(St.-Katelijne-Waver, Belgium). Compounds were eluted by an isocratic solvent mixture 

containing 85% water with 0.05% formic acid and 15% acetonitrile with 0.05% formic acid, 

the flow rate was 20 mL/min. Absorbance was monitored at 307 nm.  

 

2.3.5 HRMS  

High-resolution mass spectra (HRMS) were recorded on a Finnigan MAT 95 XP-API-

GC-Trap Tandem Mass Spectrometer (Thermo Finnigan, Bremen, Germany). ESI-MS was 

performed in the positive mode under the following operating parameters: probe voltage, 3 

kV; capillary temperature, 250 °C. The mobile phase consisted of a mixture of acetonitrile 

and water with 0.1% formic acid (50:50) (v/v) at a flow rate of 50 µL/min. PEG 200/300 (2.5 

ng/µL sample) was used as internal standard. 

 

2.3.6 NMR analysis  

NMR spectra were recorded at 298.1 K using a Varian Mercury 300 spectrometer 

equipped with a 5 mm PFG-probe, observing 1H at 300.0 and 13C at 75.4 MHz. The 

compound was dissolved in 1 mL of DMSO-d6 and transferred to a 5 mm NMR tube. All 

chemical shifts are expressed in ppm relative to TMS for 1H spectra (δ 0 ppm) and DMSO-d6 

for 13C spectra (δ 39.52 ppm). The 1H NMR spectra were acquired using 128 transients, with 

spectral widths of 4803.1 Hz and digitized with 32 K data points. For 13C NMR spectra 12000 

transients were recorded and a spectral width of 18867.9 Hz digitized with 128 K points was 
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used. Relaxation delays were set to 1 s, and a 45° excitation pulse was used. DEPT-45°, 

DEPT-135°, DEPT-90° experiments were performed to distinguish methyl, methylene, 

methine and quaternary carbon resonances. For 13C NMR spectra a line broadening of 1 Hz 

was applied during processing. Gradient enhanced 1H - 1H COSY and TOCSY correlation 

experiments were performed through standard pulse sequences, as suggested by the 

manufacturer. The gCOSY was performed using a spectral width of 4.8 kHz and 2K data 

points with 8 transients for each of the 200 t1 increments. The gTOCSY was performed using 

a spectral width of 4.8 kHz, 2K data points and a mixing time of 80 ms with 32 transients for 

each of the 256 t1 increments. Data were multiplied by a sine bell function in both dimensions 

and transformed into the frequency domain as a 2048 x 2048 data matrix. The one-bond 1H -  
13C correlation experiments were acquired using the manufactures gradient HSQC pulse 

program with spectral width of 4.8 kHz in f2 and 12.8 kHz in f1 (32 transients, 2 K data points, 

and 512 t1 increments). Data were multiplied by a Gaussian function in both dimensions and 

transformed into the frequency domain as an 8192 x 2048 data matrix. The long-range 1H - 
13C correlation experiments were recorded using the manufactures gradient HMBC pulse 

sequence with spectral width of 4.8 kHz in f2 and 18.1 kHz in f1 (32 transients, 2 K data 

points, and 512 t1 increments) and an evolution delay of 62.5 ms (J(C,H) = 8 Hz). Data were 

multiplied by a sine bell function in both dimensions and transformed into the frequency 

domain as a 2048 x 2048 data matrix. 

 
2.3.7 IC analysis 

The anionic counterpart of the microbial PhIP metabolite was determined using a 

Metrohm 761 Compact Ion Chromatograph (Metrohm, Herisau, Switzerland) equipped with a 

conductivity detector. The operational parameters were as follows: column, Metrosep A supp 

5; eluent, 1.06 g/L Na2CO3; flow, 0.7 mL/min; sample loop, 20 µL. 
 

3. Results 

3.1. Microbial conversion of PhIP by human feces 

3.1.1 Incubation of PhIP with human fecal samples 

The capacity of the microbial cultures obtained from six human stool samples to 

transform the food carcinogen PhIP was tested by incubating the cultures with 1 mg/L PhIP 

for a period of 3 days (Figure 2.2).  
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Figure 2.2 PhIP degradation (A) and formation of its microbial metabolite PhIP-M1 (B) in 

cell suspensions derived from six human stools (▼, □, ∇, ●, ○, ■). PhIP initial 

concentration was 1 mg/L. PhIP and metabolite concentrations were 

determined by HPLC analysis and presented as average (+SD) percentage of 

the PhIP peak area at day 0 (n=3). 

 

All six human feces transformed PhIP, though with different efficiencies. Indeed the 

fraction of PhIP degraded over 72 h ranged from 47 to 95% of the initial quantity for the low- 

and high-degrading microbiota respectively. The formation of one metabolite (further referred 

to as PhIP-M1) accompanied PhIP degradation in each fecal incubation experiment (Figure 

2.3). 
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Figure 2.3  HPLC chromatograms with fluorescence (A, C) and absorbance (B, D) 

detection of PhIP and its metabolite PhIP-M1 produced by the human intestinal 

microbiota. (A, B) Standard 10 ng and 500 ng PhIP. (C, D) Metabolic products 

of PhIP incubated with human intestinal microbiota for 3 days. Initial 

incubation concentration was 10 mg/L PhIP. 

 

This metabolite peak was not observed upon incubation of undosed fecal cultures, 

confirming its PhIP origin. Interindividual differences between the kinetics of metabolite 

formation paralleled those between the kinetics of PhIP transformation. This resulted in a 
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time dependent increase of 55 to 98% of the metabolite peak area relative to the initial PhIP 

peak area at day 0. Upon incubation of PhIP with fecal material that was inactivated prior to 

incubation, no decrease in PhIP concentration or metabolite formation was observed. 

 
3.1.2 Characterization of the PhIP metabolism by human fecal cultures  

The data obtained from Figure 2.2 showed that the capacity of the human microbiota to 

transform PhIP varied with the origin of the fecal sample. Yet, the majority of the fecal 

microbiota belonged to the intermediate-degrading category. Therefore further investigation 

of the PhIP transformation was performed with an intermediate-degrading fecal culture. To 

thoroughly screen for microbial PhIP metabolite production, a 12 h experiment was 

performed during which unprocessed incubation medium was sampled every hour and 

analyzed by HPLC with fluorescence and UV detection (Figure 2.4).  
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Figure 2.4 Kinetics of PhIP transformation and metabolite formation in cell suspensions 

derived from human feces. Results are presented as average (+SD) 

concentrations of PhIP and the microbial PhIP metabolite (n=3). 

 

This approach allowed the formation of solely one transformation product to be 

observed. The increase in concentration of this metabolite paralleled the decrease in PhIP 

concentration in a time dependent manner. Subsequent experiments were conducted using 

five different incubation concentrations of PhIP ranging from 1 to 1000 mg/L for a period of 

3 days. Again only one PhIP metabolite could be observed and the transformation occurred 

with a conversion efficiency of 80 ± 2% regardless of the initial concentration of PhIP. 
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3.2. Chemical identification of microbial PhIP metabolite 

3.2.1 HPLC analysis of human feces incubated with PhIP  

When PhIP was incubated with microbial cultures derived from human feces, one 

microbial PhIP metabolite could be observed by HPLC with fluorescence (Figure 2.3 B) and 

absorbance (Figure 2.3 D) detection. The elution profile of the metabolic products included 

PhIP at 17.77 min and the PhIP metabolite PhIP-M1 at 19.06. These products showed distinct 

absorbance maxima: PhIP (204, 227 and 316 nm), PhIP-M1 (205, 228 and 307 nm) and 

fluorescence excitation maxima: PhIP (316 nm), PhIP-M1 (312 nm).  

 

3.2.2 MSn analysis of human feces incubated with PhIP 

In evaluating the chemical structure of the microbial PhIP metabolite, the LC-MSn mass 

spectra in ESI positive ion mode of a 3-day incubation extract were recorded. In MS-full scan, 

the pseudo-molecular ions with m/z 225 and m/z 281 appeared at the respective retention 

times 17.77 and 19.06 min. MS2-full scan of the pseudo-molecular ion m/z 225 showed the 

product ion with m/z 210. Fragmentation of this product ion gave rise to a fragment at m/z 183 

and 168. MS2-full scan of the pseudo-molecular ion m/z 281 showed the product ions with 

m/z 263 and m/z 225. Fragmentation of the most mass abundant product ion m/z 263 derived 

from PhIP-M1 showed fragments at m/z 248, m/z 236, m/z 222 and m/z 210.  

 

3.2.3 HRMS analysis 

The exact molecular formula of the PhIP metabolite PhIP-M1 was determined by 

recording the high-resolution mass spectrum of a sample containing 5 µg/µL of PhIP-M1, 

purified by preparative HPLC. A mass was measured of 281.1398 corresponding with the 

theoretical mass of 281.13969 and molecular formula of C16H17N4O. 

 
3.2.4 NMR analysis 

Sufficient quantities of the PhIP metabolite PhIP-M1 for NMR analysis were obtained 

by incubating 20 mg PhIP in 40 mL batch culture for 5 days. Purification of the PhIP 

metabolite extract was achieved by preparative HPLC. Ca. 8.9 mg of the major PhIP 

metabolite (99.2% purity by LC-MS/MS) was obtained by this approach. For the complete 

and unambiguous assignment of all 1H and 13C chemical shifts and coupling constants of the 
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PhIP metabolite PhIP-M1, a combination of two-dimensional gCOSY, gHSQC and gHMBC 

experiments were acquired in DMSO-d6. These data are summarized in Table 2.1.  

 

Table 2.1.  1H and 13C NMR chemical shifts, δ(ppm), multiplicities and coupling 

constants, J(1H, 1H)(Hz), 1H - 1H and 1H - 13C correlations in respectively, 

gCOSY and gHMBC for the microbial PhIP metabolite PhIP-M1 in DMSO-d6.  

Position δ(13C) H δ(13H) Multi- 
plicitya J(Hz) gCOSY gHMBC 

2 147.7 - - - - - - 

13-NH - NH 10.81 (1H) br s - H-12 - 

5 141.3 5 8.63 (1H) d 1.9 H-7 C-7,9,1’ 

7 116.6 7 8.38 (1H) d 2.0 H-5 C-5,6,8,9 

6 136.9 - - - - - - 

8 124.6 - - - - - - 

9 141.9 - - - - - - 

N-CH3 29.7 CH3 3.78 (3H) s - - C-2,8 

1’ 132.1 - - - - - - 

2’ 127.1 2’ 7.81 (1H) d 7.3 H-3’ C-1’,3’,4’,5’,6’ 

3’ 129.2 3’ 7.54 (1H) t 7.3 H-2’,4’ C-6,5’ 

4’ 128.1 4’ 7.52 (1H) t 7.3 H-,3’,5’ C-2’,6’ 

5’ 129.2 5’ 7.54 (1H) t 7.3 H-4’,6’ C-6,3’ 

6’ 127.1 6’ 7.81 (1H) d 7.3 H-,5’ C-1’,2’,3’,4’,5’ 

10 34.8 10a 

10b 

4.43 (1H) 

4.04 (1H) 

ddd 

td 

12.6, 2.6, 2.6 

12.3, 4.4 

H-10b,11b 

H-10a,11b 

- 

11 26.9 11a 

11b 

2.18-2.27 (1H) 

1.99-2.12 (1H) 

m 

m 

- 

- 

H-11b,12 

H-11a,10a,10b 

- 

- 

12 71.2 12 5.37 (1H)  dd 5.3, 2.6 OH, NH, H-11a  - 

12-OH - OH 7.00 (1H) d 5.3 H-12 - 
a br s: broad singlet, d: doublet, t: triplet, m: multiplet 

 

DEPT analysis showed one methyl group, two methylene and eight methine groups; the 
13C-NMR spectrum revealed five quaternary carbons. These groups accounted for 15 of the 

17 protons seen in the 1H spectrum. The missing hydrogens, bound to hetero atoms, were 

identified as a hydroxyl group and a secondary amine thus being in agreement with the 

molecular formula of C16H17N4O. The odd mass and the presence of four nitrogens showed 

that the molecule was protonated. The additional unsaturation in the PhIP metabolite must be 

due to the formation of an extra ring. All proton and carbon resonances of the PhIP template 
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could be unambiguously assigned using gCOSY, gHSQC and gHMBC and were in agreement 

with data reported on PhIP (Felton et al., 1986a; Collins et al., 2002). In PhIP-M1, the 

carbons at positions 2 and 9 were significantly shifted upfield from δ 158.7 and δ 157.0 to δ 

147.7 and δ 141.9, respectively, suggesting that the new ring was fused to the imidazole. The 

alcohol (12-OH) appeared as a doublet at δ 7.00 ppm and the secondary amine (NH-13) as a 

broad singlet at δ 10.81 ppm. Analysis of the gCOSY spectrum showed correlation of these 

two signals with a methine signal at δ 5.37 (H-12), which led to the identification of a hemi-

aminal. In addition three new carbon resonances were present in PhIP-M1 at δ 71.2 (C-12), δ 

26.2 (C-11) and δ 34.8 (C-10), correlating with signals at δ 5.37 (H-12), δ 1.99-2.12 (H-11b), 

δ 2.18-2.27 (H-11a), δ 4.04 (H-10b) and δ 4.43 (H-10a). The gCOSY and gTOCSY spectra 

confirmed that these three groups were adjacent in the non-aromatic heterocyclic ring. This 

spin system terminates at one end as a hemi-aminal group and ends at the other edge at a 

nitrogen atom. The hemi-aminal is derived from the primary amine in PhIP and the other end 

of the new moiety is necessarily attached to N-3, otherwise the imidazole would be 

deconjugated and aromaticity would be lost.  

 

The anionic part of PhIP-M1 was determined using ion chromatography. IC analysis of 

1.6 mmol/L of the purified PhIP-M1 metabolite corresponded with an equivalent 

concentration of chloride. Consequently the metabolite PhIP-M1 was assigned as 7-hydroxy-

5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium 

chloride as depicted in Figure 2.5.  

 

 
 
Figure 2.5  Molecular structure of PhIP and its microbial metabolite 7-hydroxy-5-methyl-

3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium 

chloride. C-atom numbering for PhIP-M1 refers to the respective numbering of 

the PhIP parent compound. 
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4. Discussion 

In the present study, we have shown that intestinal microorganisms derived from human 

feces actively transform the food carcinogen PhIP, resulting in the formation of one major 

metabolite. We elucidated the chemical structure of the microbial PhIP metabolite by a 

combination of mass spectrometric and NMR spectroscopic evidence. Moreover, we 

investigated the interindividual variation in PhIP metabolism between six human microbiota 

and the kinetics at different PhIP incubation concentrations. 

 

Like many other environmental carcinogens, PhIP requires metabolic activation to exert 

toxic effects. Previous studies indicate that PhIP is converted into two primary products: 2-

hydroxyamino-PhIP (N2-OH-PhIP) and 4’-hydroxyamino-PhIP (4’-OH-PhIP), the former 

being highly mutagenic, and the latter being non-mutagenic (Crofts et al., 1997; Turesky, 

2002). These metabolites may subsequently be conjugated with acetyl, glucuronide, 

glutathione or sulphate to form secondary phase II metabolites. According to literature, the 

biotransformation of PhIP is highly dependent upon the cytochrome P4501A2 isozyme, 

mainly expressed in the liver (Crofts et al., 1998). However, the liver is not the only 

transformation site inside the human body. The human colon contains ~1012 

microorganisms/cm³, with an enormous metabolic potential. Bacterial enzymes catalyze many 

reactions including hydrolysis, dehydroxylation, demethylation, ring cleavage and 

carboxylation (Ilett et al., 1990). Numerous findings show that intestinal microorganisms and 

lactobacilli contained in dairy products play a key role in the activation and detoxification of 

various classes of DNA-reactive carcinogens such as nitrosamines, aflatoxins, polycyclic 

aromatic hydrocarbons, azo compounds, nitroarenes and glycosides (Rowland and Grasso, 

1975; Oatley et al., 2000; Knasmüller et al., 2001; Wang et al., 2004; Decroos et al., 2005; 

Van de Wiele et al., 2005). Our results confirm a similar microbial activity towards the food 

carcinogen PhIP, since it can be converted by the intestinal microbiota as well.  

 

While PhIP is biotransformed into a large number of derivatives in the liver, the human 

intestinal microbiota selectively converted PhIP into one major metabolite. By analyzing 

crude incubation media by HPLC with fluorescence detection, we can assert that the PhIP 

derivative observed is unambiguously the only metabolite produced by bacterial conversion 

and rule out the possibility that other derivates have been released, yet not recovered in the 

extract. HPLC with fluorescence detection is a highly sensitive and powerful analytical tool 
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for providing quantitative information on fluorescent compounds in complex biological media 

(Pais and Knize, 2000; Ristic et al., 2004). Synchronous absorbance and fluorescence 

spectroscopic analysis of PhIP and its microbial metabolite PhIP-M1 revealed a decrease in 

wavelength of both absorbance and fluorescence excitation maxima for the PhIP derivative 

compared to its precursor, indicating an alteration at the primary amine function or imidazo 

moiety. Crofts  et al. (1998) measured the fluorescence intensity for PhIP and the phase I liver 

metabolites and observed a decrease in fluorescence excitation maxima upon hydroxylation of 

the primary amine, whereas hydroxylation of the phenyl substituent caused an increase in 

fluorescence maxima. Mass spectrometry gave a molecular ion at m/z 281 [M + H]+ 

indicating that a fragment of 56 mass units had been added to PhIP (m/z 225 [M + H]+). Loss 

of water from the molecule ion refered to the presence of a hydroxyl group. High resolution 

mass spectrometry revealed the exact molecular mass 281.1398 and molecular formula 

C16H17N4O. Further elucidation of the chemical identity of the microbial PhIP metabolite was 

achieved by careful analysis and interpretation of the 1D and 2D NMR and IC data, assigning 

the metabolite as 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo-

[1,2-a]pyrimidin-5-ium chloride (Figure 2.5). 

 

Up to now, data regarding the microbial transformation of heterocyclic amines are 

scarce. Only for the quinolines IQ and MeIQ (2-amino-3,4-dimethylimidazo[4,5-f]quinoline) 

has it been reported that incubation with human fecal microbiota resulted in the formation of 

stable hydroxy metabolites (Bashir et al., 1987; Carman et al., 1988; Vantassell et al., 1990). 

The microbial metabolism of PhIP shows however no resemblance to that of IQ and MeIQ. 

One possible explanation for this discrepancy is the protective effect of the phenyl substituent 

of PhIP, thereby impairing hydroxylation on the imidazo moiety. Several reports however 

emphasize the crucial role of the intestinal bacteria in the genotoxicity of heterocyclic amines 

(Kassie et al., 2001; Knasmüller et al., 2001), implying cleavage of glucuronide-conjugates as 

the most important mechanism by which intestinal bacteria activate heterocyclic amines. In 

contrast, bacteria in fermented foods and dairy products are known to detoxify these 

heterocyclic amines by direct binding to the cell walls (Bolognani et al., 1997; Knasmüller et 

al., 2001). Moreover, overall health effects may result from a combination of microbial 

interactions with multiple and perhaps additive or interfering activities. The impact of 

microbial transformations on the carcinogenicity of heterocyclic amines, entering the colon in 

their native form, remains underinvestigated. Our results indicate that microbial 
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transformation of PhIP causes an increase in hydrophobicity for the metabolite, thereby 

facilitating its absorption from the colon to exert potential biological activity inside the human 

body. Research has shown that the human colonic mucosa generally has a higher permeability 

to hydrophobic compounds than the small intestinal mucosa (Ungell et al., 1998; van der Bijl 

and van Eyk, 2003). Further in vivo studies are warranted to acquire insight into the 

bioavailability and biological activity of this newly discovered PhIP metabolite throughout 

the intestine. However, as the efficiencies of the fecal samples to degrade PhIP ranged from 

47 to 95%, interindividual variability in the microbial community and activity could strongly 

influence the individual exposure to this dietary carcinogen. Interindividual differences in 

microbial metabolic activities are not uncommon. A striking example is the microbial 

conversion of the dietary phytoestrogen daidzein (Decroos et al., 2005; Wang et al., 2005). 

Intensive research has shown that only approximately one third of humans harbour an 

intestinal microbiota capable of transforming daidzein into equol (Rowland et al., 2000). A 

similar interindividual variability in microbial transformation has been shown for the group of 

the prenylflavonoids as well (Possemiers et al., 2005). 

 

In conclusion, by converting PhIP into 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-

tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride, human intestinal 

microbiota would contribute to the bioactivation or detoxification of a putative food-borne 

carcinogen. As a significant fraction of the daily exposure of PhIP is suggested to reach the 

colon in its native form, this biotransformation potency has to be considered when estimating 

the risks related to fried meat ingestion. Moreover, we showed interindividual differences in 

the microbial PhIP transformation, which may predict individual differences in susceptibility 

to the risks associated with this suspected dietary carcinogen. 
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CHAPTER 3CHAPTER 3   
 

Intestinal bacteria metabolize the dietary carcinogen 2-amino-1-

methyl-6-phenylimidazo[4,5-b]pyridine following consumption of 

a single cooked chicken meal in humans 
 

ABSTRACT 

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a carcinogenic 

heterocyclic amine formed in meats during cooking. Although the formation of PhIP 

metabolites by mammalian enzymes has been extensively reported, the involvement of the 

intestinal bacteria remains unclear. This study examined the urinary and fecal excretion of a 

newly identified microbial PhIP metabolite 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-

tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1) in humans. 

The subjects were fed 150 g of cooked chicken containing 0.88-4.7 µg PhIP, and urine and 

feces collections were obtained during 72 h after the meal. PhIP-M1 and its trideuterated 

derivate were synthesized and a LC-MS/MS method was developed for their quantification. 

The mutagenic activity of PhIP-M1, as analyzed using the Salmonella strains TA98, TA100 

and TA102, yielded no significant response. Of the ingested PhIP dose, volunteers excreted 

12-21% as PhIP and 1.2-15% as PhIP-M1 in urine, and 26-42% as PhIP and 0.9-11% as PhIP-

M1 in feces. The rate of PhIP-M1 excretion varied among the subjects. Yet, an increase in 

urinary excretion was observed for successive time increments, whereas for PhIP the majority 

was excreted in the first 24 h. These findings suggest that besides differences in digestion, 

metabolism and diet, the microbial composition of the gastrointestinal tract also strongly 

influences individual disposition and carcinogenic risk from PhIP. 
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1. Introduction 

Diet is a major risk factor in human cancer (Doll and Peto, 1981). Epidemiological 

studies indicate that the consumption of cooked meat and meat products predisposes 

individuals to neoplastic disease, particularly of the colon (Deverdier et al., 1991; Doll, 

1992). Dietary factors which may be important in the etiology of human cancer include 

heterocyclic amines (Felton et al., 1986b). Of the 19 heterocyclic amines identified, 2-amino-

1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most mass abundant heterocyclic 

amine produced during the cooking of beef, pork and chicken (Felton et al., 1986a; Murray et 

al., 1993; Sinha et al., 1995; Wong et al., 2005). The highest levels of PhIP can be found in 

grilled or fried meats. In very well-done flame-grilled chicken PhIP can be found at levels up 

to 480 ng/g (Sinha et al., 1995). The human intake of PhIP varies with food type and cooking 

conditions and is estimated to range from nanograms to tens of micrograms per day, 

depending on individual dietary and cooking preferences (Layton et al., 1995; Zimmerli et al., 

2001). Experimentally, PhIP is a potent mutagen and genotoxin and has been shown to 

produce mammary gland, prostate and colon tumors in rats (Ito et al., 1991; Shirai et al., 

1997; Sugimura, 2000). In humans, less is known about the potential role of PhIP and related 

heterocyclic amines in tumor development. Several studies have shown that individuals who 

eat well-done meat have an elevated risk of breast (Zheng et al., 1998) and colorectal (Sinha, 

1999; Gunter et al., 2005) cancers. Not all studies have shown a positive correlation, however  

(Augustsson et al., 1999). 

 

Until recently, studies of human PhIP metabolism mainly focused on the activation and 

detoxification of heterocyclic amines by mammalian enzymes. PhIP must first be metabolized 

via Phase I and Phase II enzymes to exert its mutagenic and carcinogenic effect. This involves 

an initial cytochrome P4501A2 (CYP1A2) catalyzed N-hydroxylation step, to form N2-

hydroxy-PhIP. N2-hydroxy-PhIP, which is mutagenic on its own, can be converted to a more 

biologically reactive form via Phase II metabolizing enzymes, to electrophilic O-sulfonyl and 

O-acetyl esters which have the capacity to bind DNA and cellular proteins (Buonarati et al., 

1991; Boobis et al., 1994; Edwards et al., 1994). Detoxification primarily involves 

glucuronidation. N2-hydroxy-PhIP can form stable glucuronide conjugates at the N2 and N3 

positions, which can be excreted or transported to extra-hepatic tissue for further metabolism 

(Alexander et al., 1991; Kaderlik et al., 1994). PhIP can also be hydroxylated at the 

4’position. 4’-Hydroxy-PhIP can be conjugated by sulfation and glucuronidation to polar 
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compounds that are readily excreted (Watkins et al., 1991; Buonarati et al., 1992). In 

addition, the parent compound can be directly glucuronidated at the N2 and N3 positions. 

These glucuronides are not reactive and therefore considered as detoxification products  

(Styczynski et al., 1993; Kaderlik et al., 1994). 

 

Recent research has shown that the amount of PhIP metabolites excreted in the 0-24 h 

urine represented 17 ± 10% of the ingested PhIP in a meat matrix (Kulp et al., 2004). In an 

earlier study with patients given PhIP in a capsule, 90% of the ingested dose was recovered in 

the urine (Malfatti et al., 1999). This indicates that PhIP provided in capsule form is more 

bioavailable than PhIP ingested from meat. The non-bioavailable fraction reaches the colon in 

an intact form to come into contact with the resident microbiota. Direct binding of 

heterocyclic amines to the cell walls of intestinal bacteria has been reported and is currently 

considered as a detoxification mechanism since it prevents absorption of heterocyclic amines 

through the intestinal mucosa (Bolognani et al., 1997; Turbic et al., 2002). However, little has 

been done to characterize PhIP metabolism by the human intestinal microbiota, although our 

early work examined the in vitro transformation of PhIP by human fecal cultures (Vanhaecke 

et al., 2006). The latter study identified one major microbial PhIP metabolite, namely 7-

hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-

ium chloride (PhIP-M1) (Figure 3.1).  

 

 
 
Figure 3.1 Metabolite of PhIP formed by the human intestinal microbiota: 7-hydroxy-5-

methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-

5-ium chloride. 

 

Currently, there is no information available about the biological activity and in vivo 

formation of this newly discovered bacterial PhIP metabolite. Therefore the focus of the 

present study was to investigate the role of the intestinal microbiota in the metabolism of  

PhIP, following consumption of a single cooked chicken meal in humans. A solid phase 
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extraction LC-MS/MS method was developed for quantifying PhIP and PhIP-M1 in human 

urine and feces. We applied this method to characterize microbial PhIP metabolism in six 

healthy adults receiving a known dose of naturally produced PhIP. In addition, the mutagenic 

activity of PhIP-M1 was analyzed using the Ames test.  
 

2. Material and methods 

2.1 Synthesis of PhIP-M1 and its trideuterated derivate 

7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-

a]pyrimidin-5-ium chloride (PhIP-M1) and its trideuterated derivate [2H3]PhIP-M1 were 

synthesized using procedures modified from previous studies (Vanhaecke et al., 2006). 

Briefly, incubation mixtures consisted of 25 mg/L PhIP or 5 mg/L [2H3]PhIP in TY broth 

(tryptone 30 g/L, yeast extract 20 g/L, L-cysteine 0.5 g/L, pH 7.0) supplemented with 10% 

(v/v) fecal inoculum in phosphate buffered saline (0.1 M, pH 7) in a final volume of 50 mL. 

Each sample was sealed with a butyl rubber top and anaerobiosis was obtained by flushing the 

flasks with N2 during 15 cycles of 2 min each at 800 mbar overpressure and 900 mbar 

underpressure. Cultures were incubated at 37 °C and 150 rpm for 5 days. After incubation, 

PhIP-M1 or [2H3]PhIP-M1 were extracted from the digests using a previously published 

liquid-liquid extraction procedure (Vanhaecke et al., 2006). The yield of PhIP-M1 from PhIP 

and [2H3]PhIP-M1 from [2H3]PhIP was ~ 90%.  

 

Purification was obtained by preparative high-performance liquid chromatography on a 

Gilson preparative HPLC system (Gilson International B.V., Middleton, United States) 

comprising a H322 pump system and a 206 fraction collector, coupled to a model 156 

UV/VIS detector. Chromatographic separation was achieved using a 10 µm 21.4 x 250 mm 

Omnisphere C18 column obtained from Varian (St.-Katelijne-Waver, Belgium). Compounds 

were eluted by an isocratic solvent mixture containing 85% water with 0.05% formic acid and 

15% acetonitrile with 0.05% formic acid, at a flow rate of 20 mL/min. Absorbance was 

monitored at 307 nm. The identities of the microbial PhIP metabolites were confirmed by 

their LC-MS/MS fragmentation pattern (see below). The peaks corresponding to PhIP-M1 

and [2H3]PhIP-M1 were collected and evaporated to dryness under nitrogen gas. Purity of 

PhIP-M1 and its deuterated derivate was 97 ± 0.8% as determined by LC-MS/MS. Isotopic 

purity of [2H3]PhIP-M1 was 99%. 
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2.2 Study design 

The study protocol was reviewed and approved by the Ethics Committee of the Ghent 

University Hospital (EC UZG 2005/404). Informed consent was obtained from each subject 

prior to beginning the study. The six individuals participating were recruited from the local 

workforce, were all male, between 20 and 30 years old, in good health, non-smokers and of 

normal weight. None had a history of digestive pathology nor had received antibiotics during 

3 months prior to the study. 
 

2.3 Meat preparation and controlled dietary period 

Boneless, skinless chicken breasts were cut into ~ 2.5 cm pieces and fried in a non-stick 

coated pan, sprayed with a non-stick cooking spray, for 25-35 min. Pan temperature was 

recorded every 5 min, averaging 180 °C for the cooking period. At the end of the cooking 

time the chicken was white with some browning. A representative chicken sample was 

removed for heterocyclic amine analysis using previously published methods (Knize et al., 

1995). Total PhIP dose depended on the exact cooking time and was different for each of the 

three batches of chicken cooked. The PhIP content in the various batches ranged from 4.4 to 

39 ng/g. The two first study subjects (A, B) were provided chicken containing 39 ng/g PhIP 

along with other non-meat foods and beverages. The total PhIP dose was 4.7 µg PhIP. The 

next two study subjects (C, D) were given chicken containing 4.4 ng/g, for a total dose of 0.88 

µg. The remaining two subjects (E, F) received chicken containing 18 ng/g PhIP, for a total 

dose of 2.7 µg. The subjects were all provided with 150 g of chicken. 

 

Subjects were asked to abstain from meat consumption for 3 days prior and 3 days after 

eating the well-done chicken breast. There were no other dietary restrictions. Control urine 

and feces samples were received before eating the chicken and all urine and feces was 

collected for 3 days afterwards, in 8 h increments for urine and 24 h increments for feces. 

Fecal slurries of 20% (w/v) fresh fecal inocula were prepared by homogenizing the feces with 

phosphate buffered saline (0.1 M, pH 7). Samples were coded, the volume recorded and 

stored frozen at -20 °C until analysis. 
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2.4 Analysis of PhIP and PhIP-M1 in human feces and urine 

Urine samples (5 mL) and fecal slurries (5 mL) were spiked with 100 µL internal 

standard containing 125 µg/L [2H3]PhIP and [2H3]PhIP-M1 in dimethylsulfoxide (DMSO), 

added with 0.5 mL of 6 M NaOH and mixed with 5 g of diatomaceous earth. The mixture was 

placed into an empty Extrelut-20 cartridge and extracted with 30 and 60 mL of 

dichloromethane for the urine and fecal samples, respectively. The eluate was directly passed 

through an Oasis MCX (30 and 60 mg) cartridge, preconditioned with either 1 or 2 mL of 

dichloromethane. After washing the cartridges with 1 mL of 0.1 M HCl and 1 mL of 

acetonitrile, heterocyclic amines were eluted with 6 or 12 mL of 10% NH3 in acetonitrile for 

the urine and fecal samples, respectively. Finally, the extracts were evaporated to dryness 

under a stream of nitrogen, redissolved in 100 µL of acetonitrile-5 mM formic acid (75:25) 

and injected into the LC-MS/MS in a volume of 20 µL. 

 

Acid hydrolysis of urine was carried out by adding 0.5 mL of 1 M HCl to 5 mL of urine 

and heating at 90 °C for 1 h. For fecal samples 0.5 mL of 6 M HCl was used. After hydrolysis 

was completed, 0.5 mL of 1 and 6 M of sodium hydroxide was added to the urine and feces, 

respectively, to obtain a basic medium. Subsequently the samples were processed using the 

optimized clean-up procedure mentioned above. 

 

Chromatography was carried out on a Thermo Finnigan HPLC system (San Jose, CA, 

USA) comprising a P4000 quaternary pump and an AS3000 autosampler, equipped with a 5 

µm 2.1 x 150 mm Symmetry C18 column obtained from Waters (Milford, MA, USA). 

Metabolites were eluted at a flow rate of 300 µL/min using a mobile phase of 98% A (0.01% 

aqueous formic acid) and 2% B (acetonitrile) for 2 min, increasing linearly to 60% B at 22 

min, maintaining 60% B for 8 min, and finally increasing to 100% B in the minute. 

 

Analytes were detected with a LCQ Deca ion trap mass spectrometer (Thermo 

Finnigan, San Jose, CA, USA) in the MS/MS positive ion mode using an Electrospray 

Ionisation (ESI) interface. A capillary temperature of 240 °C, a source voltage of 4.5 kV and 

sheath gas of 70 units with no auxiliary gas were used.  

 

Alternating scans were used to isolate [M + H]+ ions at masses 225 and 281 for PhIP 

and PhIP-M1, respectively and 228 and 284 for the deuterated internal standards. The 
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precursor isolation width was set to 2 Da, the activation Q to 0.35 and the collision energy to 

45%. Daughter ions were detected at appropriate masses: 210 [M + H-CH3]+ from 225 for 

PhIP, 263 [M + H-OH]+ and 225 [M + H-tetrahydropyridine-OH]+ from 281 for PhIP-M1, 

210 [M + H-CD3]+ from 228 for [2H3]PhIP, 266 [M + H-OH]+ and 228 [M + H-

tetrahydropyridine-OH]+ from 284 for [2H3]PhIP-M1. The overall recovery of PhIP and PhIP-

M1 was determined by spiking each urine and feces sample with known amounts of their 

deuterated analogues. Final PhIP and PhIP-M1 concentrations were adjusted based on 

recovery of the internal standard. The effect of the urine or fecal matrix on the overall 

recovery of PhIP and PhIP-M1 was determined by spiking increasing amounts of the internal 

standard in 5 mL of water and comparing these recoveries to the recovery of the internal 

standard in 5 mL urine or fecal slurry. Replicate analyses of several different urine and fecal 

samples were made during the course of the study to determine the precision of the assay. 
 

2.5 Salmonella mutagenicity assay 

The mutagenic activity of the purified extract of PhIP-M1 in DMSO (100 ng/µL for 

TA98 and 2 µg/µL for TA100 and TA102) was determined using the standard plate 

incorporation assay described by Ames et al. (1973), with Salmonella typhimurium strains 

TA98, TA100 and TA102 (gifts of Professor Bruce Ames, University of California, Berkeley) 

and tested in 5, 10, 25, 50 and 100 µL volumes. Aroclor-induced rat liver S9 protein (2 mg 

per plate) was used for metabolic activation. As a positive control, 2-amino-3-

methylimidazo[4,5-f]quinoline (IQ) was used. DMSO was the negative control (spontaneous 

revertant counts). Dose-response curves of the mutagenic activity were calculated using the 

method of Moore and Felton (1983). A minimum of four dose points from duplicate platings 

was used, and the linear portion of the curve was used to calculate the number of revertants 

per µg of PhIP-M1 extract. 

 

3. Results 

3.1 Method development, urine and feces analysis 

The goal of this study was to develop and apply a method that reliably quantifies PhIP 

and its newly identified microbial metabolite PhIP-M1 in urine and feces samples of healthy 

individuals administered a known dose of PhIP. The initial step of the method utilized an acid 
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hydrolysis to release phase II conjugates. Strickland et al. (2001) found that the optimal 

conditions for releasing PhIP from urine conjugates was incubation at 90 °C for 60 min at a 

final HCl concentration of 0.05-0.1 N. For fecal samples a final HCl concentration of 0.5-0.6 

N is required for optimal hydrolysis (unpublished data). During the next step of the method 

liquid-liquid extraction was applied to eliminate macromolecules from the urine and fecal 

matrices. In order to avoid problems due to emulsions and manipulation of the sample, the 

contact was increased between both liquids by the addition of a solid support of diatomaceous 

earth. After this initial purification, secondary purifications were designed to exploit the 

protonation of the heterocyclic nitrogen atoms common to PhIP and PhIP-M1 in an Oasis 

MCX cartridge, combining reversed-phase silica and cation-exchange mechanisms. During 

this final step, the removal of uncharged interference and concentration of the compounds was 

achieved. 

 

Because of the complexity of the urine and fecal extracts and the overlapping retention 

times of the analytes and the internal standards, UV or fluorescence detection could not be 

used. Due to co-elution of hundreds of compounds into the mass spectrometer, detection of a 

signal above the background with single-ion monitoring MS for the parent masses was only 

possible for a limited amount of samples (data not shown). Therefore multiple MS detection 

was necessary for these analyses. An authentic standard of PhIP and a synthesized standard of 

PhIP-M1 were used to optimize the HPLC separation and fragmentation. The LC-MS/MS 

peak areas were linear over the range 0.25-100 µg/L with R2 values of 0.999 and 0.997 for 

PhIP and PhIP-M1, respectively. The method developed in this study using LC-MS/MS 

detects peaks for PhIP, the microbial metabolite PhIP-M1 and the deuterated internal 

standards in a single chromatographic run (Figure 3.2) and has been successfully applied for 

urine as well as feces. Since other ion peaks are sometimes present in the chromatograms that 

are not PhIP or PhIP-M1 (Figure 3.2), expected peak retention times were compared with the 

internal standards and calibration standards to identify PhIP and PhIP-M1. PhIP typically 

exhibits a sharp peak and a good signal-to-noise ratio (Figure 3.2 A). The internal standard 

[2H3]PhIP elutes at the same time as the non-labeled product (Figure 3.2 B). PhIP-M1 is 

separated in time from PhIP and fragments into two daughter ions with masses 225 and 263. 

The sum of those two peaks is used for quantification (Figure 3.2 C). The internal standard 

[2H3]PhIP-M1 shows a similar profile as the natural product (Figure 3.2 D). 
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Figure 3.2 Ion plots of PhIP, the microbial metabolite PhIP-M1 and the deuterated 

internal standards from hydrolyzed urine of subject B 8 to 16 h after 

consuming the well-done chicken. (A) Mass 210 peak plot after fragmenting 

mass 225, representing PhIP. (B) Mass 210 peak plot after fragmenting mass 

228, representing the internal standard [2H3]PhIP. (C) Sum of masses 225 and 

263 after fragmenting mass 281, representing PhIP-M1. (D) Sum of masses 

228 and 266 after fragmenting mass 284, representing the internal standard 

[2H3]PhIP-M1. 
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3.2 Recovery and reproducibility 

Spiking human urine and feces samples with increasing concentrations of [2H3]PhIP and 

[2H3]PhIP-M1 allowed us to determine the recovery of the compounds while optimizing the 

extraction protocol. Typical recoveries ranged from 74 to 83% for [2H3]PhIP and 51 to 86% 

for [2H3]PhIP-M1 in urine samples and from 51 to 59% for [2H3]PhIP and 24 to 31% for 

[2H3]PhIP-M1 in fecal samples (Table 3.1). Recovery of the internal standards was obviously 

better in water (81 to 100%) compared to urine and feces, indicating that the complexity of 

the urine and fecal matrices interferes with the efficiency of the solid phase extraction 

columns or lowers the sensitivity of the mass spectrometer through ion suppression.  

 

Table 3.1.  Percent recovery of [2H3]PhIP and [2H3]PhIP-M1 spiked into water, urine or 

feces upon extraction. 

Compound Spike (ng) Water Urine Feces 
[2H3]PhIP 0.5 95.7 ± 3.1 77.7 ± 5.1 50.7 ± 15.6 
 2.5 91.8 ± 12.8 74.0 ± 2.1 59.2 ± 29.4 
 10 99.4 ± 3.6 82.8 ± 8.9 52.0 ± 0.9 
[2H3]PhIP-M1 0.5 97.0 ± 1.2 85.9 ± 3.4 24.0 ± 12.0 
 2.5 80.9 ± 12.5 51.1 ± 2.6 30.9 ± 3.8 
 10 93.6 ± 3.3 57.8 ± 9.7 29.7 ± 3.1 

 

Recovery using the optimized method for the kinetic samples was quantified by spiking 

each urine or fecal sample with the deuterium-labeled internal standards [2H3]PhIP and 

[2H3]PhIP-M1. Final PhIP and PhIP-M1 concentrations in each sample were adjusted based 

upon recovery of the internal standards in that sample. Because of the small peak sizes in our 

assay, there is variation inherent in the mass spectrometry detection. To account for this 

variation, each extract was injected three times and the peak areas averaged. 
 

3.3 Microbial PhIP metabolite quantification 

Control urine and feces samples were collected from each of the six volunteers the day 

before the consumption of the well-done chicken, during the period that they abstained from 

eating cooked meat. PhIP was detectable in one of six control urine samples (72 ng/L) and in 

all six control feces samples (593 ± 342 ng/L). PhIP-M1 was detectable in two of six control 

urine samples (18 ± 14 ng/L) and in four of six control fecal samples (28 ± 9.7 ng/L). Because 

of the low concentrations detected in the control urine samples compared to the urine after 
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chicken consumption, these background concentrations were not taken into account for 

quantification. The fecal pre-feeding concentrations were however a factor 10 higher. 

Therefore a correction was made by subtracting the volume corrected pre-feeding values from 

the respective post-feeding amounts. Total urine and feces excreted after chicken 

consumption were collected for 72 h in 8 h increments for urine and 24 h increments for 

feces. Values shown are corrected for the total volumes of urine and feces.  

 

Figure 3.3 shows the absolute dose percentages of PhIP and the microbial metabolite 

PhIP-M1 recovered in urine and feces for the six subjects. These varied from 12 to 21% for 

PhIP and 1.2 to 15% for PhIP-M1 in urine, and from 26 to 42% for PhIP and 0.9 to 11% 

PhIP-M1 in feces. No significant differences in absolute PhIP or PhIP-M1 dose percentage 

excreted could be observed for the different PhIP doses administered. 

 

 
Figure 3.3 Total 72 h excretion of urinary and fecal PhIP and PhIP-M1 for six individuals 

after ingesting a well-done chicken meal. The recovery-corrected sum of the 

amount of PhIP and PhIP-M1 (mean ± SD) detected in hydrolyzed fecal and 

urine samples are shown (n=3).  

 

Figure 3.4 shows the rate of excretion of PhIP and the microbial PhIP metabolite for the 

respective time periods collected. Our results demonstrate that excretion rates for PhIP and 

PhIP-M1 vary among volunteers, but that most urinary PhIP (Figure 3.4 A) was excreted 

during the first 24h, while for the microbial metabolite (Figure 3.4 B) the urinary excretion 
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increased throughout time with a maximum between 48 and 72 h. Subject A however 

excreted only 1.2% of PhIP-M1 in urine. 

 

 
 

Figure 3.4 Rate of excretion of PhIP and its microbial metabolite PhIP-M1 in human urine 

from six volunteers. Time increments shown are 0-8 h, 8-16 h, 16-24 h, 24-48 

h and 48-72 h after consuming well-done chicken. Data represent the 

percentage of the total PhIP or PhIP-M1 excreted (mean ± SD) during the 

designated time intervals (n=3). (A) PhIP recovered from hydrolyzed urine 

samples. (B) PhIP-M1 recovered from hydrolyzed urine samples.  

 

Fecal PhIP excretion (Figure 3.5 A) was the highest during the 24-48 h period for 

subjects A and E, whereas subjects C and F excreted most in the 48-72 h period. Subject’s B 
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fecal PhIP excretion was almost equal all three days. Subject D excreted most PhIP during the 

first 24 h. Fecal PhIP-M1 excretion (Figure 3.5 B) was the highest during the 24-48 h period 

for subjects A, C and E; subject B excreted more during the first 24 h; subject F excreted most 

during the 48-72 h period. Subject D excreted almost equally all three days. 

 

 
 

Figure 3.5 Rate of excretion of PhIP and its microbial metabolite PhIP-M1 in human feces 

from six volunteers. Time increments shown are 0-24 h, 24-48 h and 48-72 h 

after consuming well-done chicken. Data represent the percentage of the total 

PhIP or PhIP-M1 excreted (mean ± SD) during the designated time intervals 

(n=3). (A) PhIP recovered from hydrolyzed feces samples. (B) PhIP-M1 

recovered from hydrolyzed feces samples.  
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3.4 Salmonella mutagenicity data 

As a positive control, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) gave 800-1130 

revertants per 5 ng dose for TA98, 1300-1400 revertants per 0.2 µg dose for TA100 and 500-

600 revertants per 1 µg dose for TA102. DMSO gave TA98 values of 20-40 revertant 

colonies per plate, TA100 values of 140-170 revertant colonies per plate and TA102 values of 

260-300 revertant colonies per plate. 
 

Analysis of the mutagenic activity of PhIP-M1 using the Ames test with strains TA98, 

TA100 and TA102 without metabolic activation gave no positive result. S9-mediated 

analysis, gave a positive response (a positive slope for the dose-response curve) for strain 

TA98 and strain TA100 (Table 3.2). For each strain the revertant colonies per Petri plate were 

plotted against the mass equivalents of PhIP-M1 extract. The slope of this line was used to 

determine the mutagenic response. Yet, a mutagenic potency for the microbial metabolite was 

measured of about 2-4% of that of PhIP (Table 3.2). 

 

Table 3.2.  Comparison of the mutagenic activity of PhIP (Felton and Knize, 1990) and its 

microbial metabolite PhIP-M1.  

Salmonella strain Mutagenic response (revertants/µg) 
 PhIP PhIP-M1 
TA98 1700 45.9 ± 1.99 
TA100 140 6.46 ± 0.85 
TA102 Not positive Not positive 

 

4. Discussion 

The metabolism of PhIP has been well characterized in animal species (Buonarati et al., 

1992; Davis et al., 1994) and several studies have been undertaken to examine the disposition 

of PhIP in humans (Malfatti et al., 1999; Kulp et al., 2000; Kulp et al., 2004). Yet, little is 

known about the contribution of the intestinal microbiota to the overall metabolism of PhIP. 

The present study is the first to detect the excretion of a microbial PhIP metabolite in human 

urine and feces. The variation in microbial PhIP metabolism between six healthy human 

subjects, the kinetics of PhIP microbial metabolite excretion and the mutagenic activity of this 

newly identified microbial PhIP metabolite, are reported.  

 



In vivo metabolism of PhIP by human intestinal microbiota 

 81 

Optimizing a solid phase extraction procedure for PhIP and its microbial metabolite 

encountered some difficulties due to the complexity of the urine and fecal matrices. The Oasis 

MCX brand was selected because of its dual nature in retaining heterocyclic amines and was 

found superior in recovery compared to the various brands of C18 and cation exchange 

supports. Diatomaceous earth extract proved a suitable substrate for eliminating emulsion and 

manipulation problems and increasing contact between analytes and solvent (Galceran et al., 

1996). Subsequent liquid-liquid extraction with dichloromethane achieved a significant 

decrease in matrix interferences without completely ruling out co-extracted impurities in the 

final sample. To retain as much analyte as possible, further washing steps were minimized 

and a satisfactory procedure was devised meeting our goal to quantify PhIP and PhIP-M1 in 

both urine and fecal samples. Urine and fecal samples were heated with acid prior to analysis 

in order to hydrolyze phase II conjugates (Reistad et al., 1997; Stillwell et al., 1997). A large 

increase (7-10 fold) in the amount of PhIP detected following this acid treatment has been 

reported for urine (Lynch et al., 1992; Stillwell et al., 1997; Strickland et al., 2001) and 

indicates that acid-labile PhIP metabolites represent a major proportion of the PhIP in human 

urine. This has been confirmed in recent studies on the metabolism of ingested PhIP 

indicating that PhIP-N2-glucuronide, N2-OH-PhIP-N2-glucuronide and N2-OH-PhIP-N3-

glucuronide are common metabolites in human urine (Kulp et al., 2004). Overall, the acid 

treatment enhances the amount of free PhIP and should provide an estimate of total 

mammalian PhIP metabolites excreted, without having to analyze each liver metabolite 

separately. Analysis of urine and feces samples as such have shown that acid hydrolysis does 

not affect the recovery of PhIP-M1 (data not shown), implying that PhIP-M1 is not 

conjugated by mammalian enzymes.  

 

Well-done chicken is the best source of PhIP exposure because at high temperatures and 

long cooking times chicken breast preferentially forms more PhIP and less of the related 

heterocyclic aromatic amines as compared with beef. Formation of PhIP seems to be favored 

by higher amounts of the amino acids phenylalanine, isoleucine, leucine and tyrosine and 

lower amounts of glucose that are present in chicken (Pais et al., 1999). Both the amounts of 

chicken consumed by our volunteers and the PhIP levels were comparable with consumption 

levels measured in households or restaurants. 
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It is unlikely that PhIP-M1 was formed de novo during hydrolysis in the urine or feces 

from PhIP. We spiked PhIP and PhIP-M1 in baseline urine and fecal samples and no 

production of PhIP-M1, respectively PhIP, was measured. Numerous publications describe 

the incubation of PhIP with liver hepatocytes or enzymes and none of them report the 

detection of a metabolite resembling PhIP-M1 (Zhao et al., 1994; Crofts et al., 1998; Turesky 

et al., 2002), whereas incubation of PhIP with specific intestinal bacterial species in the 

presence of glycerol and a protein-rich feed source, does give rise to the formation of this 

metabolite (Vanhaecke et al., 2008b). Therefore our results confirm that the intestinal 

microbiota contribute to the overall metabolism and disposition of PhIP in vivo, although a 

high degree of interindividual variation in the urinary and fecal excretion exists. The 

percentage of the PhIP dose excreted in the 0-72 h hydrolyzed urine varied from 12 to 21% 

with an average of 15 ± 3.9% for PhIP and from 1.2 to 15% with an average of 5.7 ± 5.1% for 

its microbial metabolite PhIP-M1. Our findings for PhIP are comparable with data previously 

obtained by Strickland et al. (2001), where the average 24 h urinary excretion of PhIP 

(unchanged plus acid-labile conjugates) from individuals fed a uniform diet containing high-

temperature cooked meat, amounted 17 ± 7.4%. The percentages of the total PhIP dose 

excreted in this study as PhIP (26-42%) and PhIP-M1 (0.9-11%) in feces were surprisingly 

high and could explain the relatively low PhIP dose percentages measured in urine in 

previous metabolism studies of human subjects given PhIP in a meat matrix (Strickland et al., 

2001; Kulp et al., 2004). The total percentage of the PhIP dose accounted for in the 72 h urine 

and feces as PhIP and PhIP-M1 varied among individuals from 49 to 71% with an average of 

51 ± 8.8%. When N-OH-PhIP-N2-glucuronide, the major human N-oxidation metabolite of 

PhIP is hydrolyzed under acidic conditions, the deaminated product 2-OH-PhIP is formed. 

This derivate was not quantified during this study, but Stillwell et al. (2002) measured 2-OH-

PhIP in urine collected from 66 subjects after ingestion of a meat-based meal and reported 

that 25 ± 8.4% of the ingested PhIP dose was excreted as 2-OH-PhIP in the 0-24 h urine. The 

formation of this hydroxylated derivate might explain the deficit in dose percentage 

encountered in this study. The variability in PhIP-M1 excretion can be explained by the 

interindividual variability in microbial community composition and activity between test 

subjects (Eckburg et al., 2005). In vitro incubation of PhIP with intestinal bacteria derived 

from stools freshly collected from healthy volunteers confirms these results, measuring PhIP 

transformation efficiencies from 37 to 90% within the first 24 h of incubation (Vanhaecke et 

al., 2006). Interindividual differences in microbial metabolic activities are not uncommon. A 
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striking example is the microbial conversion of the dietary phytoestrogen daidzein (Decroos 

et al., 2005).  

 

The kinetics of PhIP excretion in our study are similar to those previously observed for 

humans on a meat based diet (Stillwell et al., 1997; Strickland et al., 2001). Our results 

demonstrate that excretion times vary among the volunteers, but that 72 ± 27% of total PhIP 

excretion takes place in the first 24 h. Malfatti et al. (1999) is to our knowledge the only 

paper in which the kinetics of PhIP, in this particular case [14C]PhIP, were examined over a 

period of 72 h. In the latter study the subjects were hospitalized elderly cancer patients who 

were given PhIP in a gelatine capsule. This route of administration resulted in a recovery of 

90% of the ingested dose in the urine and in all subjects the majority of the dose was excreted 

in the first 12 h. Our study consisted of younger men on their normal diet, which was 

unrestricted except for refraining from meat consumption for the 72 h prior to dosing and 

during the course of the study. It is probable that the PhIP when formed in a meat matrix, is 

not as bioavailable as PhIP in capsule form. In addition, the interaction with additional foods 

and the resident microbiota in the gastrointestinal tract influences the absorption, distribution 

and as demonstrated here, the metabolism and excretion as well. The kinetics of microbial 

PhIP metabolite excretion showed a significant interindividual variability as well. Compared 

to PhIP, the microbial metabolite excretion was shifted in time, 35 ± 18% was excreted in the 

first 24 h, 33 ± 19% during the 24-48 h period and 32 ± 18% during the 48-72 h period. 

Microbial metabolites have indeed the tendency to appear later in excretion profiles of plasma 

and urine (Watanabe et al., 1998; Li et al., 2006).  

 

In a final part of this study, we assessed the microbial genotoxicity of the newly 

identified PhIP metabolite. A weak activity was measured upon S9 activation amounting up 

to 2.7 ± 0.2% of the original PhIP mutagenic potency for TA98 and 4.5 ± 0.6% for TA100. 

As the PhIP-M1 extract was, despite of the preparative separation, not entirely pure (97 ± 

0.8%), a residual fraction of PhIP in this extract might explain the weak mutagenic activity 

measured after S9 activation. Based on these results, the microbial transformation of PhIP 

may be considered as a detoxification. Further studies will focus on determining the in vitro 

and in vivo mammalian toxicology of this microbial PhIP derivate.   
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In summary, we have developed a method for quantifying PhIP and its newly identified 

microbial metabolite PhIP-M1 in urine and feces utilizing solid phase extraction and LC-

MS/MS. This method allowed to detect PhIP and PhIP-M1 in urine and fecal samples 

collected from six volunteers following ingestion of a natural dose of PhIP. These findings 

suggest that besides individual differences in digestion, metabolism and diet, the microbial 

composition of the gastrointestinal tract also strongly influences individual disposition and 

carcinogenic risk from PhIP. 
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CHAPTER 4CHAPTER 4   
 

Isolation and characterization of human intestinal bacteria, 

capable of transforming the dietary carcinogen 2-amino-1-methyl-

6-phenylimidazo[4,5-b]pyridine (PhIP)  

 

ABSTRACT 

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a carcinogenic 

heterocyclic aromatic amine formed in meat products during cooking. Although the formation 

of hazardous PhIP metabolites by mammalian enzymes has been extensively reported, 

research on the putative involvement of the human intestinal microbiota in PhIP metabolism 

remains scarce. In this study, the in vitro conversion of PhIP into its microbial derivate 7-

hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-

ium chloride (PhIP-M1) by fecal samples from eighteen human volunteers was investigated. 

HPLC analysis showed that all human fecal samples transformed PhIP, but with efficiencies 

ranging from 1.8 to 96% after 72 h incubation. Two PhIP transforming strains PhIP-M1-a and 

PhIP-M1-b were isolated from human feces and identified by FAFLPTM and pheS sequence 

analyses as Enterococcus faecium. Some strains from culture collections belonging to the 

species Enterococcus durans, Enterococcus avium, Enterococcus faecium and Lactobacillus 

reuteri were also able to perform this transformation. Yeast extract, special peptone and meat 

extract supported PhIP transformation by the enriched Enterococcus faecium strains, while 

tryptone, monomeric sugars, starch and cellulose did not. Glycerol was identified as a fecal 

matrix constituent required for PhIP transformation. Abiotic synthesis of PhIP-M1 and 

quantification of the glycerol metabolite 3-hydroxypropopionaldehyde (3-HPA) confirmed 

that the anaerobic fermentation of glycerol via 3-HPA is the critical bacterial transformation 

process responsible for the formation of PhIP-M1. Whether it is a detoxification is still a 

matter of debate, since PhIP-M1 has been shown to be cytotoxic towards Caco-2 cells, but is 

not mutagenic in the Ames assay. 
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1. Introduction 

Diet is a major risk factor in human cancer (Doll and Peto, 1981). Epidemiological 

studies indicate that the consumption of cooked meat and meat products predisposes 

individuals to neoplastic disease, particularly of the colon (Doll, 1992). Cooked muscle meats 

contain potent genotoxic carcinogens belonging to the heterocyclic aromatic amine (HCA) 

class of chemical compounds (Nagao et al., 1977). Of the 19 heterocyclic amines identified so 

far, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most mass abundant 

heterocyclic amine produced during the cooking of beef, pork and chicken (Felton et al., 

1986a; Sinha et al., 1995). Experimentally, PhIP is a potent mutagen and genotoxin and has 

been shown to produce mammary gland, prostate and colon tumors in rats (Ito et al., 1997; 

Shirai et al., 1997). In humans, less is known about the potential role of PhIP and related 

heterocyclic amines in tumor development. Several studies have shown that individuals who 

eat ‘well-done’ meat have an increased risk of breast (Zheng et al., 1998) and colorectal 

cancers (Gunter et al., 2005).  

 

To determine the potential health risks associated with heterocyclic amines, several 

dietary studies have been conducted on the metabolism and disposition of these compounds in 

humans. So far, most investigations focused on the activation and detoxification of 

heterocyclic amines by mammalian enzymes. The genotoxic/carcinogenic effect of 

heterocyclic amines is closely related to a highly complex metabolism involving xenobiotic- 

induced enzymes generating very reactive metabolites as well as detoxified derivatives 

(Aeschbacher and Turesky, 1991). On the other hand, the involvement of the intestinal 

microbiota in the digestive fate of heterocyclic amines remains poorly investigated 

(Knasmüller et al., 2001). Recent research showed that PhIP metabolites excreted in the 0-24 

h urine represented 17 ± 10% of the ingested PhIP in a meat matrix (Kulp et al., 2004). In an 

earlier study with patients administered with PhIP in capsules, 90% of the ingested dose was 

recovered in the urine (Malfatti et al., 1999), indicating that PhIP provided in capsule form is 

more bioavailable than via meat ingestion. The non-bioavailable PhIP fraction reaches the 

colon in an intact form and is there in contact with the resident microbiota. Direct binding of 

heterocyclic amines to the cell walls of intestinal bacteria has been reported and is currently 

considered as a detoxification mechanism since it prevents absorption of heterocyclic amines 

through the intestinal mucosa (Bolognani et al., 1997; Turbic et al., 2002). However, results 

of IQ (2-amino-3-methylimidazo[4,5-f]quinoline)-induced genotoxicity assays in germ-free 
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and conventional rodents showed that the presence of intestinal microbiota is essential to the 

induction of DNA-damage in colon and liver cells (Hirayama et al., 2000; Kassie et al., 

2001). These findings suggest that the intestinal microbiota play a significant role in the 

bioconversion of HCAs into harmful metabolites. Indications exist that hydrolysis of HCA-

glucuronides by bacterial β-glucuronidase may release mutagenic intermediates (Rumney and 

Rowland, 1992).  

 

Information on the bacterial metabolism of native HCAs is still scarce. Nevertheless 

researchers have shown that incubation of the heterocyclic amine IQ with mixed human feces 

under anaerobic conditions results in the formation of the hydroxy-metabolite 7-OH-IQ 

(Carman et al., 1988; Bashir et al., 1989) and recent research identified 10 bacterial strains 

able to perform the IQ to 7-OH-IQ transformation: Bacteroides thetaiotaomicron (n = 2), 

Clostridium clostridiforme (n = 3), Clostridium perfringens (n = 1) and Escherischia coli (n = 

4) (Humblot et al., 2005). Little has however been done to characterize PhIP metabolism by 

human intestinal microbiota, although our early work examined the in vitro transformation of 

PhIP by human fecal microbiota (Vanhaecke et al., 2006). In this study one major microbial 

metabolite of PhIP (PhIP-M1) was identified using ESI-MS/MS and 1D and 2D NMR as 7-

hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-

ium chloride. This compound was subsequently detected in human urine and feces following 

consumption of well-done chicken meat and showed no mutagenic potency in the Ames test 

(Vanhaecke et al., 2008a). 

 

This study presents the isolation and identification of individual intestinal bacteria from 

human feces capable of transforming PhIP into its microbial derivate PhIP-M1. 

Representative culture collection strains isolated from the intestine were screened for their 

PhIP transformation potential and the nutritional requirements for microbial PhIP-M1 

formation were clarified. In addition, the microbial and chemical mechanisms for this 

carcinogenic transformation were elucidated. 
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2. Material and methods 

2.1 Chemicals  

PhIP was purchased from Toronto Research Chemicals (Ontario, Canada). For 

incubation purposes, it was dissolved in dimethyl sulfoxide (DMSO). The constituents of the 

culture media, namely tryptone, yeast extract and meat extract were obtained from 

AppliChem (Darmstadt, Germany). All other chemicals were obtained from Sigma-Aldrich 

(Bornem, Belgium). Acrolein was purified by distillation at 53 °C. The HPA system (3-HPA 

and its aqueous derivates) was produced as described by Vollenweider et al. (2003) using 

Lactobacillus reuteri ATCC 53608. The solvents for HPLC and LC-MS analysis were of 

HPLC grade and purchased from Acros Organics (Geel, Belgium).  
 

2.2 Collection and preparation of human fecal samples and matrix  

Fecal samples were obtained from eighteen healthy volunteers between the age of 20 

and 65. Donors were on a Western-type diet and none had a history of digestive pathology nor 

had they received antibiotics during 3 months prior to sample delivery. Fecal slurries of 20% 

(w/v) fresh fecal inocula were prepared by homogenizing the feces with phosphate buffered 

saline (0.1 M, pH 7), containing 1 g/L sodium thioglycolate as reducing agent. The particulate 

material was removed by centrifugation for 2 min at 400 x g.  

 

Fecal matrix was prepared by autoclaving fecal slurries for 20 min at 121 °C and 

centrifuging for 10 min at 8000 x g. 

 

2.3 PhIP-M1 production by inactivated human fecal microbiota 

Bacterial incubations of 72 h grown fecal communities of the human volunteer with the 

highest PhIP transformation efficiency were subjected to several treatments to verify the 

involvement of the colonic bacteria and fecal matrix constituents in the transformation of 

PhIP. During a first treatment, the overall fecal microbiota were filtered over a 0.22 µm filter 

to remove the bacterial cells from the suspension but withhold the extracellular protein 

fraction, a treatment further referred to as FS. A second treatment consisted of a consecutive 

filter sterilization and pasteurization for 30 min at 60 °C in a warm water bath to achieve 

removal of microbial biomass and degradation of heat sensitive enzymatic activity, a 
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treatment further referred to as FS-PS. During the third treatment the fecal grown microbial 

communities were autoclaved for 20 min at 121 °C. All treatments were performed in 

triplicate and data were compared using Student’s t-test. 
 

2.4 Effect of pH, surfactants and protease inhibitors  

The sensitivity of the active substances involved in PhIP-M1 formation to surfactants, 

protease inhibitors and pH was tested on cell-free supernatants of a 72 h grown mixed fecal 

community from a high PhIP-transforming individual, incubated at 37 °C in TY broth under 

anaerobic conditions. The cells were harvested by centrifugation (8000 x g, 10 min, 4 °C), 

and the cell-free supernatant adjusted to pH 6.0 with 6 M NaOH.  

 

The surfactants tested were sodium dodecyl sulphate (SDS), Tween 80 and Triton X-

100 at final concentrations of 0.1% (w/v). The protease inhibitor EDTA (ethylenediamine 

tetraacetic acid) was added to the cell-free supernatant to yield a final concentration of 5 mM. 

 

The sensitivity of the active substance to different pH values (from 1 to 12) was tested 

by adjusting the cell-free supernatants from pH 1.0 to 12.0 (at increments of one pH unit) 

with sterile 1 M NaOH or 1 M HCl. The pH values were measured before and after the 72 h 

incubation and remained constant during the entire incubation period. 

 

Untreated cell-free supernatants were used as controls. All treatments and controls were 

incubated anaerobically at 37 °C for 72 h. Samples were taken every 24 h for HPLC analysis. 

The different treatments were executed in triplicate and data were compared using Student’s 

t-test. 
 

2.5 Effect of nutrition on microbial PhIP metabolism 

One mL of human fecal inoculum of the individual with the highest PhIP 

transformation capacity was transferred in 10 mL minimal medium (composition per Liter: 6 

g Na2HPO4, 3 g KH2PO4, 1 g NH4Cl, 0.5 g NaCl, 0.12 g MgSO4, 0.01 g CaCl2 and 0.5 g L-

cysteine) supplemented with 10 g/L of different feed sources covering the main nutritional 

components relevant for the colon: yeast extract (YE), tryptone, special peptone (PEP), 

protease peptone, meat extract (ME), fibers, glucose or olive oil (Extra Virgin, Delhaize). The 
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suspensions were prepared in 50 mL penicillin flasks and incubated anaerobically at 37 °C 

and 140 rpm for 72 h in the presence of 5 µM PhIP. At the end of this incubation period 

samples were taken for HPLC analysis and pH measurements were made. Samples were kept 

at -20 °C prior to analysis. The different treatments were executed in triplicate and data were 

compared using Student’s t-test. 
 

2.6 Isolation and identification of PhIP-transforming bacteria 

The fecal slurry of the two human volunteers with the highest PhIP transformation 

capacity was diluted in a 10-fold dilution series (10-1 to 10-8) in TY broth supplemented with 

fecal matrix (10%, vol/vol) and PhIP (5 µM). Dilutions were incubated at 37 °C under 

anaerobic conditions for 3 days and assayed at 24 h intervals for residual PhIP and PhIP-M1 

formation. At the same time intervals, samples from all dilutions were spread onto TY agar 

plates supplemented with PhIP (5 µM) to maintain a continuous exposure of the bacteria to 

the substrate. Following incubation at 37 °C under an atmosphere of 

nitrogen/hydrogen/carbon dioxide (84/8/8), five colonies per plate that differed, whenever 

possible, in size, shape, and color were picked up, subcultured in TY broth supplemented with 

fecal matrix (10%, vol/vol) and PhIP (5 µM) and then stored as stock cultures at -80 °C after 

addition of glycerol (20%, vol/vol). Identification of the biotransforming strains was 

performed phenotypically by microscopic examination and genetically by sequence 

comparison of the amplification products of the cloned 16S rRNA genes. Total DNA was 

extracted from 24 h cultures in TY broth by using the QIAamp DNA mini stool kit (Qiagen 

Benelux B.V., Venlo, The Netherlands). Denaturating gradient gel electrophoresis (DGGE), 

using universal bacterial primers, was performed according to Possemiers et al. (2004). The 

entire 16S rRNA gene of the isolated strains, amplified using the primers 63r and 1378f 

(Boon et al., 2000), was cloned using a TOPO-TA cloning kit (Invitrogen, Carlsbad, 

California, USA) according to the manufacturer’s instructions. Sequencing of the 16S rRNA 

gene fragments was performed by ITT Biotech (Bielefeld, Germany). Analysis of DNA 

sequences and sequence identity searches were completed with standard DNA sequencing 

programs and the BLAST server of the National Center for Biotechnology Information using 

the BLAST algorithm and the BLASTN program for the comparison of a nucleotide query 

sequence against a nucleotide sequence database (Altschul et al., 1997).  
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Using the former approach, identification of the bacterial strains was achieved at the 

genus level. Identification at species level was obtained by fluorescent amplified fragment 

length polymorphism (FAFLP™) and partial pheS sequence analysis. DNA was prepared 

according to Gevers et al. (2001). FAFLPTM is a PCR based technique for whole genome 

DNA fingerprinting via the selective amplification of restriction fragments (Vos et al., 1995) 

and was performed as described by Vancanneyt et al. (2006), except that the BioNumerics 

software package version 4.61 (Applied Maths, Belgium) was used. A fragment of the pheS 

gene was amplified and sequenced following the protocol of Naser et al. (2005) using an ABI 

Prism® 3130XL Genetic Analyzer (Applied Biosystems, USA). Sequence assembly was 

obtained via the AutoAssembler™ program (Applied Biosystems, Foster City, CA, USA). 

Phylogenetic analysis was performed using the BioNumerics software package, version 4.61 

after alignment of the consensus pheS sequences with in-house determined pheS sequences of 

reference strains of lactic acid bacteria taxa currently covered by the database of the 

Laboratory of Microbiology, BCCM/LMG Bacteria Collection.  
 

2.7 Strains from culture collections 

Six strains from the collection of ‘Unité d’Ecologie et de Physiologie du Système 

Digestif’ (INRA, Jouy-en-Josas, France) were kindly provided by Sylvie Rabot. All of them 

originated from human feces or intestinal contents and were isolated locally. The strains were 

strictly anaerobic Gram-negatives belonging to Bacteroides or Gram-positives belonging to 

Clostridium, Eubacterium and Bifidobacterium. A further fourteen strains from human origin 

were selected from the BCCM/LMG Bacteria Collection. They were micro-aerophilic Gram-

positives belonging to the lactic acid bacteria Enterococcus, Pediococcus and Lactobacillus. 

One Lactobacillus reuteri strain from human origin was purchased from the ATCC culture 

collection (Table 4.1). The cells were stored at -80 °C in physiological solution (8.5 g/L 

NaCl) supplemented with sterile glycerol (20%, vol/vol).  

 

2.8 Incubation conditions for isolates and culture collection strains 

All strains were inoculated in penicillin flaks containing 50 mL autoclaved TY broth 

supplemented with 0.5 g L-cysteine/L and incubated for 24 h at 37 °C. Subsequently 9 mL of 

the 24 h grown cultures were transferred to a penicillin flask containing 1 mL fecal matrix and 

5 µM PhIP. The flasks were incubated anaerobically at 37 °C while shaking at 140 rpm for 72 
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h; daily samples were taken for HPLC analysis. All strains were incubated in triplicate. A 

negative control, 1 mL fecal matrix incubated in 9 mL TY broth supplemented with 5 µM 

PhIP, was included to exclude that physico-chemical interactions of the fecal matrix 

components are at the origin of the disappearance of PhIP. 
 

2.9 Effect of nutrition on PhIP metabolism by Enterococcus faecium 

PhIP-M1-a 

Fifty µL of thawed Enterococcus faecium PhIP-M1-a stock was transferred in 10 mL of 

minimal medium supplemented with 10 g/L yeast extract (YE), tryptone, special peptone 

(PEP), protease peptone, meat extract (ME), fibers, sugars (glucose, dextrose, lactose, 

sucrose, maltose, mannose, ribose and fructose), carbohydrates (starch and cellulose), olive 

oil or combinations thereof. The suspensions were prepared in 50 mL penicillin flasks, the 

headspace replaced by nitrogen gas and incubated at 37 °C while shaking at 140 rpm for 72 h 

in the presence of 5 µM PhIP. Then 1 mL was sampled from each flask for HPLC analysis 

and incubation continued for 72 h upon supplementation of 10% (vol/vol) fecal matrix. At the 

end of this incubation period samples were taken for HPLC analysis and pH measurements 

were made. Samples were kept at -20 °C prior to analysis. The different treatments were 

executed in triplicate and data were compared using Student’s t-test. 
 

2.10 Elucidation of fecal matrix constituents  

The fecal slurry of the human volunteer with the highest PhIP transformation capacity 

was diluted using serial 10-fold dilutions (10-2 to 10-4) in 10 mL of TY broth supplemented 

with 10 g/L of glucose, dextrose, lactose, sucrose, maltose, mannose, ribose, fructose, starch, 

cellulose, glycerol, fumarate, succinate or pyruvate and 5 µM PhIP. In addition, an amount of 

50 µL thawed Enterococcus faecium PhIP-M1-a or Lactobacillus reuteri ATCC 53608 was 

transferred in 10 mL of TY broth added with the same supplements. Dilutions and pure 

cultures were incubated in triplicate in penicillin flasks at 37 °C, while shaking at 140 rpm 

under anaerobic conditions for 72 h. Every 24 h, samples were taken for PhIP and PhIP-M1 

analysis and pH measurements were made. Samples were kept at -20 °C prior to analysis. The 

highest PhIP transforming fecal dilution (10-4) and Lactobacillus reuteri ATCC 53608 were 

subsequentely incubated in 50 mL of 10 g/L meat extract supplemented with 10 g/L glycerol 
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at 37°C and 140 rpm under anaerobic conditions for 72 h. Every 24 h, samples were taken for 

3-HPA analysis and derivatized as described below. 
 

2.11 Abiotic synthesis of PhIP-M1 

The potential glycerol metabolites or derivates of interest: i.e. the HPA system and 

acrolein were supplemented in concentrations of 0.01, 0.1, 1, 10 and 100 mM to penicillin 

flasks containing 10 mL of 10 g/L meat extract and 5 µM of PhIP. Flasks were incubated at 

37 °C while shaking at 140 rpm for 36 h and samples were taken every 12 h for 3-HPA and 

PhIP-M1 analysis. Incubations were performed in triplicate. 
 

2.12 Acrolein and 3-HPA analysis  

The concentration of the HPA system (3-HPA and derivates) during synthesis was 

determined by using a colorimetric method containing tryptophan adapted from Circle et al. 

(1945) by Vollenweider et al. (2003). The concentration of acrolein and 3-HPA during batch 

incubation experiments was determined by preparing the more stable 2,4-dinitrophenyl 

hydrazine (DNPH) derivates. DNPH derivatization was carried out according to literature 

(Zwiener et al., 2003) by adding 500 µL DNPH reagent solution to 5 mL of bacterial medium 

or bacterial medium dilution. The reagent solution was prepared by dissolving 20 mg DNPH 

in 15 mL HCl/water/acetonitrile 2:5:1 (vol/vol) according to literature (Kieber and Mopper, 

1990). The reaction time was at least 12 h at room temperature. The acidified samples were 

exctracted and pre-concentrated by SPE on Oasis HLB cartridges (60 mg sorbent, Waters, 

Milford, MA, USA). The cartridges were preconditioned with methanol (3 mL), acetonitrile 

(3 mL) and MilliQ water (4 mL). For extraction the acidified samples (5 mL) were sucked 

through the preconditioned sorbent at a flow rate of approximately 5 mL/min. After sample 

extraction the adsorbent was washed with MilliQ water (1 mL) and the adsorbed compounds 

were eluted with acetonitrile (3 x 2 mL). Before measurement the samples were evaporated to 

dryness with a gentle stream of nitrogen and the residue was dissolved in acetonitrile/MilliQ 

(50:50) (vol/vol). Pre-concentration factors of 1 to 25 were achieved. HPLC analysis was 

performed on a Dionex system (Sunnyvale, California, USA) comprising an autosampler 

ASI-100, a pump series P580 and a STH585 column oven coupled to a UV-VIS detector 

UVD340S. A 20 µL volume of the sample was injected and separated over a Genesis C18 

column (150 mm x 4.6 mm, 5 µm) (Jones Chromatography). The temperature was set at 35 
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°C and the flow rate was maintained at 1 mL/min. Solvents were A: 

water/acetonitrile/tetrahydrofuran/iso-propanol (59:30:10:1) and B: acetonitrile/water (65:35). 

The elution gradient was 100% A at 0 min to 60% A at 12 min, to 40% A at 17 min and back 

to 100% A at 20 min. Absorbance was monitored at 365 nm. Linear calibration curves for 

acrolein and 3-HPA spiked in 10 g/L meat extract, extracted with SPE and redissolved in an 

equal amount of acetonitrile/MilliQ, were obtained in the concentration range 0.75-90 mg/L. 
 

2.13 PhIP and PhIP-M1 analysis 

One hundred µL of each sample was diluted 10-fold with acetonitrile-0.01% formic 

acid (75:25), vortexed rigorously and centrifuged (10,000 x g, 2 min). The supernatant was 

transferred to a HPLC vial and stored at 4 °C until analysis. PhIP and PhIP-M1 analyses were 

performed on a Dionex HPLC system (Sunnyvale, California, USA) (Vanhaecke et al., 2006).  

 

3. Results 

3.1 PhIP-M1 production by human fecal microbiota 

The capacity of mixed microbial cultures obtained from 18 human stool samples to 

transform the food carcinogen PhIP was tested by incubating the obtained overall human fecal 

microbiota with 5 µM PhIP for a period of 3 days (Figure 4.1). 

 

Figure 4.1  Conversion of PhIP into PhIP-M1 by intestinal bacteria from 18 different 

humans incubated during 72 h with 5 µM PhIP. The individuals were arranged 

by increasing PhIP-M1 production. Values are means ± SD (n = 3). 
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All human fecal samples transformed PhIP, though with different efficiencies ranging 

for the produced PhIP-M1 from 1.8 to 96% for the lowest and highest transforming 

microbiota, respectively. Based on these results two high PhIP-converting microbiota were 

selected for elucidation of the nature of PhIP metabolism and isolation and identification of 

the PhIP-transforming species. 
 

3.2 PhIP metabolism by inactivated human fecal microbiota 

 

 

Figure 4.2 Conversion of PhIP into PhIP-M1 by (A) 72 h grown fecal microbiota exposed 

to different inactivating treatments, (B) 72 h grown fecal community cell-free 

supernatants exposed to enzyme inhibitors and surfactants. Data are presented 

as means ± SD (n = 3). 
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The production of PhIP-M1 during 3 days following different inactivating conditions is 

presented in Figure 4.2 A. The control reached an average PhIP-M1 formation of 96 ± 0.1% 

after three days, which decreased significantly (p < 0.05) to 73 ± 5.0% and 35 ± 16%, upon 

filter sterilization alone or combined with pasteurization, respectively. The difference in PhIP-

M1 formation between FS and FS-PS treatments was however not significant. After 

autoclaving of the bacterial suspension, only a very limited PhIP-M1 production was 

detected. 
 

3.3 Effect of surfactants, protease inhibitors and pH  

The production of PhIP-M1 following 3 days of incubation of supernatants prepared 

from overall fecal microbiota and supplemented with different surfactants and protease 

inhibitors is depicted in Figure 4.2 B. The control incubation revealed an average PhIP-M1 

production of 78 ± 0.6% after 72 h, while with SDS a significant (p < 0.01) increase in PhIP-

M1 formation up to 94 ± 2.7% was observed. Treatment with EDTA (54 ± 1.5%) and Triton 

X-100 (42 ± 1.2%) significantly (p < 0.01) decreased the PhIP-M1 production. No significant 

(p > 0.05) effects could be observed upon Tween 80 addition.  

 

The transformation of PhIP into PhIP-M1 measured at different pH values ranging from 

1 to 12 revealed a maximum efficiency of 93% at pH 6 and no PhIP-M1 production below pH 

2 and above pH 9. 
 

3.4 Effect of nutrition on PhIP metabolism by mixed cultures 

The capacity of the highest PhIP transforming mixed fecal microbiota to transform the 

food carcinogen PhIP under different nutritional conditions was tested by incubating 5 µM 

PhIP for a period of 3 days in the presence of minimal medium supplemented with different 

protein sources, glucose, starch, cellulose, fibers and olive oil. It was observed that 

supplementation of protein-rich feed sources such as meat extract, yeast extract and special 

peptone containing also traces of sugars and carbohydrates, lead to a significant production of 

PhIP-M1 (Figure 4.3 A), while protein-rich feed sources such as tryptone and protease 

peptone containing exclusively amino acids and peptides did not support PhIP-M1 formation. 

Glucose supplementation however drastically decreased the PhIP transformation efficiency (p 

< 0.01) (Figure 4.3 A). The carbohydrates starch and cellulose and the fiber-rich medium did 
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not sustain any PhIP-M1 formation (data not shown). Supplementation of olive oil allowed 

intermediate transformation efficiency (Figure 4.3 A). Concomitant supplementation of yeast 

extract and glucose, yeast extract and carbohydrates and yeast extract and fibers did not 

significantly (p > 0.05) affect the transformation efficiency observed after yeast extract 

supplementation (data not shown). 

 

 
 

Figure 4.3  Conversion of PhIP into PhIP-M1 (A) by mixed fecal microbiota and (B) 

Enterococcus faecium PhIP-M1-a, grown under different nutritional conditions 

for 72 h, supplemented with 10% (vol/vol) fecal matrix and incubated for 

another 72 h. Values are means ± SD (n = 3). MM = minimal medium, YE = 

yeast extract, ME = meat extract, PEP = special peptone, CH = carbohydrates. 

 Significantly different from MM + YE, * p < 0.05; ** p < 0.01.  
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3.5 Isolation and characterization of PhIP transforming bacteria 

When incubating PhIP with serial 10-fold dilutions in TY broth of the highest PhIP-

converting fecal bacterial community, only 10-1 and 10-2 concentrations demonstrated PhIP 

transformation up to 95% and 84%, respectively. Because it did not seem probable that 

bacteria are present in this low order of magnitude in fecal suspensions, the assumption was 

made that diluting the fecal inoculum lead to the concurrent dilution of an unidentified fecal 

matrix component, essential for sustaining microbial PhIP metabolism. 

 

Therefore, new fecal dilution series of the two most efficient PhIP-converting 

individuals were again tested, but with additional supplementation of 10% cell-free fecal 

matrix (vol/vol). Co-supplementation of this fecal matrix allowed PhIP-M1 formation to 

occur at lower dilutions (until 10-5), confirming our hypothesis (data not shown). Therefore 

the enrichment procedure was performed in the presence of fecal matrix. Among the 65 

colonies picked from plates on which the serial dilutions of the PhIP-M1 producing fecal 

microbiota was plated, two colonies were retrieved that transformed PhIP upon subculturing, 

as measured by HPLC analysis of culture supernatants (Table 4.1).  

 

Table 4.1. Abilities of individual bacterial strains originating from the human digestive 

tract to convert PhIP to PhIP-M1a. 

Bacterial species and strain Origin 
Source or 
reference 

% initial PhIP 
convertedb 

Enterococcus durans LMG 20231 Human feces LMG 93 
Enterococcus durans LMG 16891  Human blood LMG 65 
Enterococcus faecium LMG 8147 Human feces LMG 2.4 
Enterococcus avium LMG 10744 Human feces LMG 90 
Enterococcus fecalis LMG 7937 Human feces LMG 0.0 
Enterococcus faecium PhIP-M1-a Human feces This studyc 91 
Enterococcus faecium PhIP-M1-b Human feces This studyc 86 
Lactobacillus reuteri LMG 13557 Human feces LMG 97 
Lactobacillus reuteri ATCC 53608 Human feces ATCC 96 

a For incubation, cell suspensions of the strains in TY broth were supplemented with 5 µM PhIP 
(anaerobic conditions, 37 °C, 140 rpm). 
bAt the end of the incubation (72 h), the PhIP and PhIP-M1 concentrations were determined by HPLC 
analysis. 
cAmong the 65 strains isolated from the human fecal samples and assayed for PhIP transformation, 
only the 2 biodegradative strains are indicated in this table. 
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The identity of the isolated strains was confirmed by comparing the sequence of the 16S 

rRNA gene of each strain within a database. Both isolates were shown to have a 100% 

sequence similarity with the genus Enterococcus. Partial sequence of the 16S rRNA has been 

deposited at GenBank under accession numbers EF373550 for Enterococcus sp. PhIP-M1-a 

and EF373551 for Enterococcus sp. PhIP-M1-b. Definite identification of the isolates at 

species level was achieved by fluorescent amplified fragment length polymorphism 

(FAFLP™) and partial pheS sequence analysis. Clusteranalysis of the FAFLP™ profiles of 

these strains with FAFLP™ profiles of reference strains of lactic acid bacteria taxa (including 

bifidobacteria), identified both strains as Enterococcus faecium. Clusteranalysis of the 

consensus pheS sequences of these strains with pheS sequences of reference strains of lactic 

acid bacteria taxa also identified both strains as Enterococcus faecium. Distinct profiles were 

however observed for the PhIP-M1-a and PhIP-M1-b strains and this for both the FAFLP™ 

and pheS sequence phylogenetic fingerprints (data not shown). 
 

3.6 PhIP metabolism by bacterial strains of fecal origin  

As the new biodegradative strains were identified as members of the genus 

Enterococcus, a selection of strains belonging to the genus Enterococcus and family of 

Lactobacillaceae were tested for their PhIP-transforming capacity (Table 4.1). Among the 

twenty collection strains that were assayed in the present experiment, six were able to produce 

PhIP-M1 as shown by HPLC analysis with fluorescence detection (Table 4.1). Most of them 

belonged to the genus Enterococcus, two Lactobacillus strains were capable as well. 
 

3.7 Effect of nutrition on PhIP metabolism by Enterococcus faecium 

PhIP-M1-a 

The percentual transformation of PhIP into PhIP-M1 after incubation of Enterococcus 

faecium PhIP-M1-a under different nutritional conditions is presented in Figure 4.3 B. 

Incubation of the strain in minimal medium did not result in PhIP-M1 formation. 

Supplementation of the medium with a protein-rich feed source, such as yeast extract, meat 

extract and special peptone, low in sugar content resulted in a significant PhIP-M1 

production. In the absence of a protein-rich feed source or in the presence of protein sources 

not containing traces of sugar no transformation could be observed (data not shown). Co-

supplementation of yeast extract with easily degradable sugars, such as glucose, sucrose, 
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mannose, maltose etc. completely (p < 0.01) inhibited the microbial metabolite formation. 

Addition of carbohydrates or fibers to the yeast extract containing medium did not 

significantly alter the microbial PhIP-M1 production (p < 0.05). 
 

3.8 Elucidation of fecal matrix constituents  

Supplementation of different diet-relevant components or systemic metabolites to the 

most efficient PhIP transforming fecal community, Enterococcus faecium PhIP-M1-a or 

Lactobacillus reuteri ATCC 53608 in TY broth showed that glycerol allows a significant 

PhIP transformation.  

 

No other supplement sustained the microbial PhIP-M1 production. PhIP-M1 formation 

was detected in mixed microbial cultures and a clear increase in PhIP transformation could be 

observed with increasing fecal dilution (Figure 4.4 A). Upon incubation of Enterococcus 

faecium PhIP-M1-a in a glycerol enriched medium, only a limited percentage of PhIP-M1 

conversion was measured while Lactobacillus reuteri ATCC 53608 showed an intermediate 

transformation efficiency (Figure 4.4 A) as compared to its high transformation efficiency 

after supplementation of fecal matrix (Table 4.1).  

 

Incubation of the highest PhIP transforming fecal dilution (10-4) and Lactobacillus 

reuteri ATCC 53608 in the presence of glycerol gave rise to the formation of 3-HPA (Figure 

4.4 B). The 3-HPA concentration however decreased with longer incubation durations. 
 

3.9 Abiotic synthesis of PhIP-M1 

Incubation of Lactobacillus reuteri ATCC 53608 in 200 mM of glycerol, lead to the 

formation of 3-HPA and its aquatic derivates (HPA system), as measured colorimetrically 

with the method of Circle et al. (1945). Supplementation of the HPA system to PhIP in a 

protein-rich matrix gave rise to the formation of PhIP-M1 for a HPA concentration ranging 

from 0.1 to 100 mM (Table 4.2). Addition of acrolein also significantly induced PhIP-M1 

production for the same concentrations (Table 4.2). During the acrolein synthesis 

experiments, no detectable amounts of acrolein could be measured. Equivalent concentrations 

of 3-HPA were however detected. During incubation with 3-HPA significant decreases in the 

3-HPA concentration could be observed. After 24 h of incubating 100 mM of 3-HPA in 10 
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g/L of meat extract supplemented with PhIP only 11 ± 1.7% of the initial 3-HPA dose could 

be detected. Incubating 10 mM of 3-HPA during 24 h resulted in the detection of only 3.3 ± 

0.4% of the initial 3-HPA dose. 
 

 
Figure 4.4 Formation of (A) PhIP-M1 and (B) 3-HPA by 10-fold dilutions of mixed fecal 

microbiota, Enterococcus faecium PhIP-M1-a and Lactobacillus reuteri ATCC 

53608 supplemented with 10 g/L glycerol. Values are means ± SD (n = 3). 
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Table 4.2. Abiotic synthesis of PhIP into PhIP-M1 by addition of HPA or acrolein to the 

sterile bacterial growth medium containing 5 µM of PhIP.  

% PhIP-M1 production after 24 h 
Concentration (mM) 

Acrolein HPA 
0.1 1.5 ± 0.8 1.2 ± 0.8 
1 11.3 ± 0.9 8.6 ± 1.3 

10 69 ± 0.6  71 ± 0.5 
100 89 ± 5.3 78 ± 0.8 

 

4. Discussion 

In this study, we have isolated two individual strains, capable of transforming the food 

carcinogen PhIP into its derivate PhIP-M1, from human fecal samples and examined the 

production of PhIP-M1 upon inoculation of the isolated strains under different nutritional 

conditions. Moreover, we investigated the interindividual variation in PhIP metabolism 

between eighteen human gut microbiota. In addition, we contributed to the mechanistic basis 

for this transformation (Figure 4.5) by incubating mixed fecal microbiota under different 

inactivating conditions and identifying the nutritional requirements for PhIP conversion. 

 

 

Figure 4.5 Reaction mechanism for microbial PhIP-M1 formation through fermentation 

of glycerol to 3-HPA by the isolated human intestinal bacteria Enterococcus 

faecium PhIP-M1-a and PhIP-M1-b. → Enzymatic reaction; ↔Equilibrium 

reactions; ---> Chemical reaction.  
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Like many other environmental carcinogens, PhIP requires metabolic activation to exert 

toxic effects. Previous studies indicate that PhIP is converted into two primary products: 2-

hydroxyamino-PhIP (N2-OH-PhIP) and 4’-hydroxyamino-PhIP (4’-OH-PhIP), the former 

being highly mutagenic, and the latter being non-mutagenic (Crofts et al., 1998; Turesky et 

al., 2002). These metabolites may subsequently be conjugated with acetyl, glucuronide, 

glutathione or sulphate to form secondary phase II metabolites. While PhIP is biotransformed 

into a large number of derivatives in the liver, the human intestinal microbiota selectively 

convert PhIP into one major metabolite (Vanhaecke et al., 2006). Strong individual variations 

however occur between the eighteen human fecal samples, screened in this study, with regard 

to their PhIP-transforming capabilities. Such metabolic variations can be attributed to 

commonly encountered interindividual differences in microbial community activity and 

structure. A striking example is the microbial conversion of the dietary phytoestrogen 

daidzein (Rowland et al., 2000; Decroos et al., 2005). Intensive research has shown that only 

approximately one third of humans harbour an intestinal microbiota capable of transforming 

daidzein into equol (Rowland et al., 2000). In addition, as our experimental results have 

shown, the nutritional composition and concentration of required cofactors for transformation 

by the individual human feces might greatly influence the individual PhIP metabolism. The 

differences in PhIP transformation capacity may thus well be linked with individual diet and 

gastro-intestinal absorption, metabolism and excretion.  

 

Until now, the metabolic nature leading from PhIP to PhIP-M1 was unknown. Liver 

cytochrome P450 in humans and rats is able to perform several hydroxylations and 

subsequent glucuronidations of the PhIP molecule. The addition of a ring substituent as 

observed with PhIP-M1 is however unseen. Our results have clearly shown that this 

metabolite cannot be produced in the absence of intestinal bacteria, i.e. upon autoclaving of 

the incubation suspension. Filter sterilization and pasteurization of the fecal slurry 

significantly decreased the metabolite formation, confirming the role of actively fermenting 

bacteria in PhIP-M1 formation and this by production of an extracellular substance through an 

enzymatic process. Reduction of the PhIP-M1 formation after supplementation of the enzyme 

inhibitor EDTA and the surfactant Triton X-100 may be explained by the involvement of an 

enzymatic reaction in the PhIP transformation process. Moreover, we have observed that 

PhIP-M1 production only takes place in the presence of a nitrogen-rich food source 

containing trace amounts of sugars and carbohydrates. These nutritional requirements were 
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shown for mixed fecal microbiota as well as for the Enterococcus faecium PhIP-M1-a 

transforming strain. This underlines the importance of a specific bacterial fermentation pattern 

for PhIP-M1 formation to occur. Besides the nutritional composition of the bacterial medium, 

additional components or cofactors, present in the fecal matrix, not influenced by autoclaving, 

are required for PhIP transformation to take place. These fecal constituents, identified during 

our study as glycerol and its fermentation products and the potential cofactors required by 

enterococci to perform the glycerol fermentation reaction, are not generally included in 

culture media for intestinal bacteria. From a nutritional point of view, glycerol may be 

considered as a relevant colonic nutritional constituent since it is liberated from dietary fat 

(triglycerides) in the intestinal tract (Matsson and Volpenhein, 1964). Glycerol is a small 

hydrophilic solute and until recently, it was generally believed to be absorbed mainly by 

paracellular passive transport from the intestine. Recent research however shows that glycerol 

absorption is saturable in the rat small intestine in situ (Yuasa et al., 2003) and in the HCT-15 

human colon cancer cell line (Fujimoto et al., 2006) and involves carrier mediated transport 

(Kato et al., 2005; Fujimoto et al., 2006). This creates the opportunity for intra-luminal 

glycerol, depending on the fat intake of the individual, to become available for intestinal 

microbial metabolism by fermenting strains or fecal excretion.  

 

The 8 PhIP-M1-producing individual bacterial strains that we discovered in the mixed 

fecal contents of humans (n = 2) and in culture collections (n = 6) are all, except for 

Lactobacillus reuteri members of the genus Enterococcus and belong to 3 different species, 

Enterococcus durans, Enterococcus faecium and Enterococcus avium. All of the strains 

converted PhIP solely into PhIP-M1, regardless of the extent of substrate consumption (range, 

2.4 to 96%). The enterococci phylogenetically belong to the clostridial subdivision of the 

Gram-positive bacteria and are detected in adult human feces at concentrations of 6.1 ± 0.7 

log10 cfu/g (Hopkins et al., 2002). Lactobacillus reuteri is also a resident of the gastro-

intestinal tract of humans and animals and is one of the dominant heterofermentative species 

in this ecosystem (Rodriguez et al., 2003). Under anaerobic conditions, several lactobacilli 

among other bacterial species (Klebsiella, Clostridium, Enterobacter, Citrobacter) have been 

shown to use glycerol as an external electron acceptor (Schutz and Radler, 1984; Talarico et 

al., 1988; Sauvageot et al., 2000). Our study is however the first to relate bacterial species of 

the genus Enterococcus to this anaerobic pathway of glycerol dissimilation. During this 

fermentation glycerol is converted by a coenzyme B12-dependent dehydratase to 3-
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hydroxypropionaldehyde (3-HPA). 3-HPA is normally an intracellular intermediate that does 

not accumulate but is reduced by an NAD+-dependent oxidoreductase to 1,3-propanediol 

(PPD) (Daniel et al., 1998; Biebl et al., 1999). Lactobacillus reuteri is unique compared to 

other lactobacilli in that the glycerol metabolite 3-HPA is excreted in higher amounts than is 

the case for other lactobacilli forming the HPA system (3-HPA and its aqueous derivates), 

also known as Reuterin, a potent bacterial inhibitor (Talarico et al., 1990). The regulation of 

the PPD pathway is dependent on the availability of fermentable carbohydrates, in particular 

glucose. In the absence of glucose PPD formation is the rate-limiting step and 3-HPA may 

accumulate. In the present study we have observed that easily degradable sugars inhibit PhIP-

M1 production. This may be linked to the absence of 3-HPA and its aqueous derivates under 

these conditions.  

 

Addition of the HPA system to our bacterial medium significantly enhanced PhIP-M1 

formation. The 3-HPA dehydratation product acrolein was also potent in producing PhIP-M1, 

but was as a consequence of its instable nature in aqueous environments immediately 

converted to 3-HPA. Another remarkable finding was the relatively fast disappearance of 3-

HPA when spiked into a protein-rich bacterial medium. This can be explained by the 

tendency of 3-HPA and its derivates, molecules which all have aldehyde groups, to react with 

amino groups in biological tissues (Sung et al., 2003). This tendency of 3-HPA to react with 

free amino groups may thus very well be responsible for the PhIP to PhIP-M1 conversion. 

Incubation of a high PhIP transforming mixed fecal dilution and Lactobacillus reuteri strain 

with glycerol clearly gave rise to the formation and detection of 3-HPA, even though a large 

part of the total amount of 3-HPA produced by the bacteria, was as a result of interactions 

with cellular material and medium components, probably not detectable. Although Reuterin 

(the HPA system) is currently accepted as an antibiotic produced by probiotic strains such as 

Lactobacillus reuteri, the risk involved with 3-HPA and its addition potency towards 

biological tissue components and pro-carcinogens such as PhIP should be taken into account. 

 

PhIP-M1 has been investigated for its potential mutagenic/genotoxic activity. It does 

not act as a direct mutagen in the Ames test, but a small increase in mutagenicity is observed 

after addition of S9 liver fraction (Vanhaecke et al., 2006). On the other hand, it has been 

shown that the intestinal microbiota are essential to the induction of DNA damage by PhIP in 

human fecal flora associated rats (Hollnagel et al., 2002), and recent investigations 
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(Vanhaecke et al., 2008c) indicate that PhIP-M1 exerts cytotoxic and apoptotic effects 

towards Caco-2 cells in vitro. Such contrasting data highlight the necessity of identifying the 

metabolites produced by microbial processes from important known pro-carcinogens in our 

diet and of further evaluating their genotoxic/carcinogenic activity. 
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CHAPTER 5CHAPTER 5   
 

The microbial PhIP metabolite 7-hydroxy-5-methyl-3-phenyl-

6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium 

chloride (PhIP-M1) induces DNA damage, apoptosis and cell cycle 

arrest towards Caco-2 cells 
 

ABSTRACT 

7-Hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-

a]pyrimidin-5-ium chloride (PhIP-M1) is a newly identified intestinal microbial metabolite 

from the food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Although 

the mutagenic potential of the endogenous N-hydroxy PhIP derivate has been reported, the 

risks associated with PhIP-M1 have not yet been explored. In this work, the cytotoxic and 

genotoxic effects originating from PhIP-M1 were assessed in the epithelial intestinal Caco-2 

cell line. PhIP-M1 significantly decreased in a time- and dose-dependent manner mitochondrial 

dehydrogenase activity and protein synthesis, with IC50 values of, respectively, 180 ± 39.4 and 

173 ± 20.3 µM after 24 h, and 33.8 ± 3.5 and 37.3 ± 10.9 µM after 72 h. Apoptosis within the 

concentration ranges of cytotoxicity was confirmed by morphological examination, DAPI 

nuclear staining and annexin V staining. PhIP-M1 provoked cell cycle arrest, characterized by a 

significant increase in the number of nucleoids in the G2/M phase. A dose-dependent increase 

in DNA damage, as quantified by the alkaline comet assay, was observed after 3 h in the 50-

200 µM range. Because these PhIP-M1-induced genomic and cellular events may contribute to 

the carcinogenicity of PhIP, the potency of the colon microbiota to bioactivate PhIP must be 

included in future risk assessments. 

 

 

 

 



Chapter 5 

 108 

1. Introduction 

Diet has long been recognized as one of the major risk factors in human cancer (Doll 

and Peto, 1981). Epidemiological studies indicate that the consumption of meat is positively 

correlated with human cancer, particularly of the colon (Doll, 1992). Cooking of meat is 

known to generate potent genotoxic carcinogens, including the heterocyclic aromatic amine 

class of chemical compounds (Sugimura, 1997). The most abundant compound among these 

heterocyclic amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), has been 

shown to specifically induce tumors of the colon, mammary gland and prostate in rats (Ito et 

al., 1991; Shirai et al., 1997), which, co-incidentally are the three most common sites of diet-

associated cancer in the Western world.  

 

To obtain its mutagenic potential, PhIP requires metabolic activation by drug 

metabolizing enzymes (Aeschbacher and Turesky, 1991). In common with other genotoxic 

aromatic amines, PhIP is metabolically activated by oxidation of the exocyclic amino group, a 

reaction mediated mainly by the cytochrome P450 isoenzyme CYP1A2 (Crofts et al., 1998; 

Turesky et al., 2002). N2-hydroxy-PhIP, which is mutagenic on its own, can be converted by 

Phase II metabolizing enzymes to the more biologically reactive electrophilic O-sulfonyl and 

O-acetyl esters, which have the capacity to bind DNA and cellular proteins (Buonarati et al., 

1991; Boobis et al., 1994; Edwards et al., 1994). Detoxification primarily involves 

glucuronidation. N2-hydroxy-PhIP can form stable glucuronide conjugates at the N2 and N3 

positions, which can be excreted or transported to extra-hepatic tissue for further metabolism 

(Alexander et al., 1991; Kaderlik et al., 1994). PhIP can also be hydroxylated at the 4’ 

position. 4’-Hydroxy-PhIP can be conjugated by sulfation and glucuronidation to polar 

compounds that are readily excreted (Watkins et al., 1991; Buonarati et al., 1992). In 

addition, the parent compound can be directly glucuronidated at the N2 and N3 positions. 

These glucuronides are not reactive and therefore considered as detoxification products 

(Styczynski et al., 1993; Kaderlik et al., 1994). 

 

While PhIP is biotransformed into a large number of derivates by mammalian enzyme 

systems, the human intestinal microbiota selectively convert PhIP into one major metabolite, 

7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-

ium chloride (PhIP-M1) (Vanhaecke et al., 2006; Vanhaecke et al., 2008b) (Figure 5.1). This 

compound has been detected in human urine and feces following consumption of well-done 
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chicken meat and did not act as a direct mutagen in the Ames test (Vanhaecke et al. 2008a). 

On the other hand, it has been shown that the intestinal microbiota are essential to the 

induction of DNA damage by PhIP in human fecal microbiota associated rats (Hollnagel et 

al., 2002).  

 

 
Figure 5.1  Metabolite of PhIP formed by the human intestinal microbiota: 7-hydroxy-5-

methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-

5-ium chloride, PhIP-M1 (Vanhaecke et al., 2006). 

 

In this context, we have performed an in vitro evaluation of the cytotoxic and genotoxic 

potential of the newly identified microbial PhIP metabolite, PhIP-M1, on the human intestinal 

Caco-2 cell line. These cells were chosen as target since the exposure site to PhIP-M1 is the 

colon and because the colon is known to be one of the main target tissues for PhIP induced 

cancer.  

 

2. Materials and methods 

2.1 Chemicals 

PhIP was purchased from Toronto Research Chemicals (Ontario, Canada). For 

incubation purposes, it was dissolved in dimethyl sulfoxide (DMSO). PhIP-M1 (7-hydroxy-5-

methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride) 

was synthesized and purified as described by Vanhaecke et al. (2008b). Purity of PhIP-M1 

was 97 ± 0.8% as determined by LC-MS. PhIP and PhIP-M1 stock solutions of, respectively, 

50 mM and 100 mM and subsequent working solutions were prepared in DMSO and 

distributed so that the final DMSO concentration was maximum 1%. Previous research has 

shown that this concentration does not decrease Caco-2 cell viability (Da Violante et al., 

2002).  
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2.2 Cell culture  

The human colonic carcinoma Caco-2 cell line (ATCC HTB37) was obtained from Eric 

Pringault (Institut Pasteur, Paris, France)(Chastre et al., 1993). Cells were sub-cultured 

weekly in Dulbecco’s modified Eagle’s medium (DMEM) + Glutamax (Invitrogen, 

Merelbeke Belgium), supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1% 

non-essential amino acids (100x) (Invitrogen), penicillin (100 IU/mL) (Invitrogen), 

streptomycin (100 µg/mL) and human transferrin (5 µg/mL) (both from Invitrogen). Cells 

were maintained as monolayer cultures at 37 °C under a humidified atmosphere of 10% CO2. 

Cells were passaged weekly, using 0.05% (w/v) trypsin and 0.02% (w/v) EDTA. For the 

experiments Caco-2 cell cultures were harvested at 80% confluency. 

 

2.3 Methyl tetrazolium (MTT) cytotoxicity assay 

Cell viability following PhIP-M1 or PhIP exposure was examined using an MTT assay. 

Metabolically active mitochondrial dehydrogenases convert the tetrazolium salt MTT to 

insoluble purple formazan crystals at a rate that is proportional to cell viability. The cultured 

Caco-2 cells (200 µL) were seeded in 96-well plates at a concentration of 1 x 105 cells/mL 

and exposed during 3, 24 or 72 h to increasing concentrations of PhIP-M1 (0-700 µM for 3 h 

treatment and 0-180 µM for 24 and 72 h treatments). Prior to the 3 h exposure, cells were 

allowed to adhere overnight. At the end of the respective incubation periods, 20 µL of a MTT 

solution (Sigma, St. Louis, Missouri, USA) (5 mg/mL in PBS) was added to each well and 

plates were returned to incubate for two additional hours at 37 °C in the dark. Subsequently, 

the growth medium was taken off and the formazan crystals were resuspended in 200 µL of 

DMSO. The 490 nm absorbance was read using a Microplate reader (Molecular Devices, 

Sunnyvale, CA, USA). Relative cell viability (in percentage) was expressed as (Abs490 treated 

cells/Abs490 control cells) x 100. The IC30 and IC50 values were estimated by means of linear 

regression from a graph depicting cellular sensitivity versus PhIP-M1 concentration. 

 

2.4 Cell viability using trypan blue exclusion  

Trypan blue exclusion was also performed to assess cytotoxicity of PhIP-M1 on Caco-2 

cells. Cells were seeded in 6-well plates at concentrations of 3 x 105 cells/mL. Cells were 

treated with varying concentrations of PhIP-M1 (0-700 µM for 3 h treatment and 0-180 µM 
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for 24 and 72 h treatments) for 3, 24 or 72 h. Subsequently the medium was removed from the 

wells by aspiration, the cells were washed with moscona and trypsin-EDTA was added in 

order to detach the cells from the wells. Finally, the cells were resuspended in fresh medium, 

and counted under the microscope using trypan blue (Sigma) as a marker for cell viability. 

Relative cell viability (in percentage) was expressed as (Number of viable treated 

cells/Number of viable control cells) x 100. The IC30 and IC50 values were estimated by 

means of linear regression from a graph depicting cellular sensitivity versus PhIP-M1 

concentration. 

 

2.5 Sulforhodamine B (SRB) growth inhibition assay 

The SRB assay was performed to assess the growth inhibition of PhIP-M1 or PhIP 

towards Caco-2 cells. Cell proliferation, measured as total protein synthesis, is a very 

sensitive toxicology marker. Sulforhodamine B (SRB) is an anionic dye that binds to proteins 

electrostatically. The fixed dye, measured photometrically (490 nm) after solubilization, 

correlates with the total protein synthesis rate and therefore with cell proliferation. The SRB 

assay was performed in 96-well plates containing 200 µL of culture medium seeded at 1 x 105 

cells/mL. Prior to the 3 h exposure, cells were allowed to adhere overnight. At various times 

post-exposure to a broad PhIP-M1 concentration range (0-700 µM for 3 h treatment and 0-

180 µM for 24 and 72 h treatments), 50 µL of a trichloroacetic acid solution (Sigma) (50%) 

was added (1 h incubation at 4 °C) to assure fixation of the cells. Thereafter, plates were 

rinsed with water, dried and stained with 200 µL of SRB (Sigma) solution per well (0.4% in 

1% acetic acid). After 30 min, unbound dye was removed by rinsing with 1% ice acetic acid. 

Subsequently, cell bound dye was extracted with Tris buffer (200 µL, 10 mM, pH 10.5) and 

determined photometrically on a Microplate reader (Molecular Devices, Sunnyvale, CA, 

USA) at 490 nm. Inhibition of growth was expressed as relative viability (Abs490 treated 

cells/Abs490 control cells) x 100. The IC30 and IC50 values were calculated by means of linear 

regression of concentration/response curves.  

 

2.6 Assessment of cell injury 

Lactate dehydrogenase (LDH) leakage is a means of measuring membrane integrity as a 

function of the amount of cytoplasmic LDH released from the cytosol into the medium. Total 

LDH activity measurements were performed with an automated controlled system 
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(Roche/Hitachi Modular Analytics SWA, Tokyo, Japan), with a lower limit for detection of 1 

U/L and a coefficient of variation of < 5%. The LDH released (%) after 24 h exposure with 

increasing concentrations of PhIP-M1 (0-300 µM) was expressed as (LDH activity in 

treatment - LDH activity in control medium)/(LDH activity in total death cells - LDH activity 

in control medium) x 100%. Total LDH release corresponding to complete Caco-2 cell death 

was determined by treatment with 1% Triton X-100.  

 

2.7 Evaluation of changes in cell morphology  

Caco-2 cells were seeded at 3 x 105 cells/mL in 6-well plates and treated for 24 h with 

increasing concentrations of PhIP-M1 (0-100 µM). After treatment, the cells were observed 

through an inverted light microscope (Leica Microsystems, Heerbrugg, Switzerland).  

 

2.8 Apoptosis assay by flow cytometry 

Caco-2 cells were seeded at 3 x 105 cells/mL in 6-well plates and after 3 or 24 h of 

exposure to PhIP-M1 (0-300 µM), PhIP (300 µM) or DMSO solvent control, detection of 

apoptosis was performed using the annexin V-FITC binding assay (human annexin V–FITC 

Detection kit, Bender MedSystems Diagnostics, Vienna, Austria). The basis of this assay is 

that during apoptosis, phosphatidylserine is translocated from the inner side to the outer side 

of the plasma membrane, where it can be detected by conjugation with annexin V-FITC. 

Annexin V-FITC-positive/propidium iodine (PI)-negative cells are considered apoptotic. 

Briefly, cells were resuspended in binding buffer (10 mM HEPES/NaOH, pH 7.4, 140 mM 

NaCl, 2.5 mM CaCl2). Annexin V-FITC was added according to the product insert and 

incubated for 15 min at room temperature in the dark. One minute before flow cytometric 

analysis, PI was added at a concentration of 20 µg/mL. Cells were analyzed by a Beckman 

Coulter Cytomics FC500 flow cytometer (Beckman Coulter, Miami, FL, USA). About 10 000 

events were accumulated per sample, quadrant settings were based on control samples. 

 

2.9 Morphological assessment of apoptosis in cells 

Caco-2 cells were seeded on coverslips (3 x 105 cells/mL). After 24 h of exposure to 

increasing PhIP-M1 concentrations (0-300 µM) cells were fixed in ice-cold methanol (-20 °C) 

for 15 min. After rinsing with Tris Buffered Saline, cells were stained with DAPI (0.4 µg/mL) 
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for 15 min in the dark and then visualized with an inverted fluorescence microscope (Leica 

Microsystems, Heerbrugg, Switzerland). Apoptotic cells were defined as cells showing 

nuclear and cytoplasmic shrinkage, chromatin condensation and apoptotic bodies. 

 

2.10 Flow cytometry analysis of cellular cycle of Caco-2 cells 

For analysis of the cell cycle distribution, the Coulter® DNA PrepTM Reagents Kit 

(Beckman Coulter, Fullerton, CA, USA) was used according to the manufacturer’s 

recommendations. Caco-2 cells were seeded into T25 flasks (106 cells/ flask) and treated with 

PhIP-M1 (0-100 µM), PhIP (0-100 µM) or DMSO solvent control for 3 or 24 h. After the 

treatment, cells were harvested by trypsinization, washed with PBS and exposed to DNA Prep 

LPR for 1 min, followed by incubation with DNA Prep Stain for 15 min at room temperature 

in the dark. Cellular DNA content was monitored on a Beckman Coulter Cytomics FC500 

flow cytometer (Beckman Coulter, Miami, FL, USA). Cell cycle fractions were quantified 

using WinCycle software (Phoenix Flow Systems, San Diego, CA). 

 

2.11 Genotoxicity testing using the comet assay 

Cells were seeded at 3 x 105 cells/mL in 96-well plates and exposed for 3 h to PhIP or 

PhIP-M1 concentrations (0-200 µM) determined as non-cytotoxic (<IC30) in the previous 

cytotoxicity assessment step. Positive controls were performed by treating two wells per plate 

with 0.1 mM or 1 mM methyl methanesulfonate (MMS) for 3 h. The cell content of each 

treated well was collected by centrifugation at 400 x g for 5 min. Cell viability was verified 

by the MTT assay. Only cell suspensions exhibiting a viability of >70% were used. The 

comet assay was then carried out according to the procedure described by Tice et al. (2000) 

with slight modifications. Seventy-five microlitres of 0.5% low-melting point agarose 

containing 3 x 104 cells were spread on a slide previously covered with two layers of, 

respectively, 1.5% and 0.8% normal-melting point agarose. A coverslip was added and the 

agarose was allowed to solidify on ice. Then the coverslip was removed and the cells lysed 

immediately by immersion in a solution (pH 10) of 2.5 M NaCl, 100 mM EDTA, 10 mM 

TRIS, 1% Triton X-100 (v/v) and 10% DMSO (v/v) for at least 1 h at 4 °C. The slides were 

removed and placed on a horizontal gel electrophoresis unit, which was filled with freshly 

prepared alkaline buffer (1 mM EDTA and 300 mM NaOH, pH > 13). In order to reduce the 

variability associated with gel box slide position or multiple electrophoresis runs, slides were 
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randomly distributed. The cells were exposed to the alkali for 20 min to allow DNA 

unwinding and expression of single-strand breaks and alkali-labile sites. Next, electrophoresis 

was conducted for 20 min at 0-4 °C by applying an electric current of 0.7 V/cm (25 V/300 

mA). All these steps were conducted sheltered from daylight to prevent the occurrence of 

additional DNA damage. After electrophoresis, the slides were neutralized with 0.4 M Tris 

(pH 7.5) and the DNA was exposed for 5 min to absolute ethanol in order to preserve the 

comet slides. Subsequently, the slides were air-dried and stored at room temperature until 

scored for DNA migration. Just prior to scoring, the DNA was stained with propidium iodide 

(20 µg/mL; 25 µL/slide). Slides were coded and examined at 250× magnification using a 

fluorescent microscope (Leica Microscopy and Scientific Instruments Group, Heerbrugg, 

Switzerland) equipped with an excitation filter of 515-560 nm and a 590 nm barrier filter, 

connected through a gated CCD camera to Comet Image Analysis System version 4.0 

software (Kinetic Imaging Ltd., Liverpool, UK). For each concentration, 100 randomly 

selected cells (50 cells from each of the two replicate slides) were analyzed and the comet 

parameter retained was the Olive tail moment (OTM). The quantitative data were derived 

from six sets of independent experiments. 

 

2.12 Halo assay 

The halo assay, also known as the low molecular weight (LMW) DNA diffusion assay 

is one of the few methods for measuring apoptosis and necrosis in vitro that also matches the 

higher sensitivity of the comet assay (Godard et al., 1999). In the absence of electrophoresis, 

cells with extensive DNA degradation associated with cell death exhibit a highly diffuse 

pattern of DNA, while viable cells have a condensed pattern associated with the high 

molecular weight DNA. To assess for the presence of cells with low molecular weight 

(LMW) DNA indicative of cell death, one comet slide from each sample was removed from 

the electrophoresis buffer (1 mM EDTA and 300 mM NaOH, pH > 13) after unwinding for 20 

min and directly washed in neutralization buffer (0.4 M Tris, pH 7.5), dipped in ethanol and 

air-dried, without being submitted to an electric field. After staining the slides with propidium 

iodide, 100 cells per slide were scored visually and classified using the following criteria: 

Type I = mostly condensed DNA with little or no diffusion; Type IIa  = mostly diffused DNA 

with a visible nucleus, Type IIb = completely diffused DNA with no visible nucleus.  
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2.13 Statistical analysis of data  

The data are presented as means ± standard deviation (SD) or standard error (SE). The 

statistical significance for the cytotoxicity, apoptosis, cell cycle analysis and LMW DNA 

diffusion assays was determined using the Student’s t-test. For the genotoxicity study, the 

Olive Tail Moment (OTM) was used to evaluate DNA damage. Since the OTM frequencies 

and other tail parameters do not follow a Gaussian distribution (Bauer et al., 1998), the non-

parametric Kruskall-Wallis test was used to display a possible dose-effect relationship. 

Moreover, the statistical significance of differences in the median values between each group 

versus the control was determined with the non-parametric Mann-Whitney U-test.  

 

3. Results 

HPLC analysis (Vanhaecke et al., 2008b) performed on cell supernatants has shown 

that initial PhIP and PhIP-M1 concentrations to which Caco-2 cells were exposed, were not 

modified during 3, 24 or 72 h of incubation, implying that endogenic PhIP or PhIP-M1 

metabolism does not take place in Caco-2 cells (data not shown).  

 

3.1 Effect of PhIP-M1 on Caco-2 viability and growth 

Trypan blue exclusion was used to determine the number and viability of Caco-2 cells 

following PhIP-M1 treatment. Growth inhibition was determined using the SRB assay. The 

cytotoxicity of the newly identified microbial PhIP derivate, PhIP-M1, was evaluated using 

the MTT assay. PhIP-M1 decreased the MTT reactions of Caco-2 cells and inhibited the 

growth in a concentration- and time-dependent manner (Figure 5.2 A-C). The addition of 

PhIP-M1 to Caco-2 cells resulted for the 3 h treatment in a significant decrease in cell 

viability as measured using trypan blue exclusion (data not shown). At the highest dose (700 

µM), cell viability was reduced to 0%. For the 24 and 72 h treatments however there was very 

little change in cell viability (dye exclusion), but a marked inhibition of cell growth was 

observed (decrease in cell number recorded under the microscope), which was dose-

dependent and detectable at lower concentrations (lower IC30 and IC50) than the observed 

MTT and SRB responses (Table 5.1).  PhIP-M1 concentrations exhibiting 30 and 50% 

decrease in cell viability were found to be in a very similar range when calculated with the 

MTT or SRB assays for the 24 and 72 h exposure durations.  
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Figure 5.2  Effect of the microbial PhIP derivate PhIP-M1 on Caco-2 cell viability, (A) 3 h 

exposure using the MTT and SRB assays, (B) 24 and 72 h exposure using the 

MTT assay, (C) 24 and 72 h exposure using the SRB assay. Values are 

expressed as percent of control response and each value is a result of at least 

three independent experiments in four replicates. Bars represent SD. 
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An exposure time of 3 h had a lower impact on the total protein synthesis, than on 

mitochondrial activity and trypan blue exclusion. This might be the result of the limited 

growth and protein synthesis that cells experience during this short incubation period. PhIP 

did not exert significant cytotoxic effects at the 3 and 24 h exposure times and only minor 

effects compared to PhIP-M1 after 72 h exposure (Table 5.1). 

 

Table 5.1. IC30 and IC50 values (± SD) for Caco-2 cells exposed during 3, 24 and 72 h to 

PhIP and PhIP-M1 as measured by the TBE (trypan blue exclusion), MTT and 

SRB assays (- : no data). 

IC30 (µM) IC50 (µM) 
Treatment 

TBE MTT SRB TBE MTT SRB 

PhIP-M1       

   3 h  233 ± 9.2 198 ± 24.2 602 ± 80.9 345 ± 11.6 358 ± 48.3 > 710 

   24 h  21.9 ± 4.3 106 ± 26.5 101 ± 23.7 46.9 ± 4.5 180 ± 39.4 173 ± 20.3 

   72 h  5.4 ± 0.15 16.6 ± 2.5 17.6 ± 9.2 10.4 ± 0.46 33.8 ± 3.5 37.3 ± 10.9 

PhIP       

   3 h  - > 710 > 710 - > 710 > 710 

   24 h  - > 180 > 180 - > 180 > 180 

   72 h  - 153 ± 7.5 149 ± 9.3 - > 180 > 180 

 

To evaluate whether the observed cytotoxic effects could be attributed to PhIP-M1 

induced plasma membrane damage, LDH release upon a 24 h treatment with 0-300 µM of 

PhIP-M1 was measured. At the highest PhIP-M1 concentrations tested (100, 200 and 300 

µM), LDH releases of, respectively, 9.2 ± 1.3%, 12.6 ± 3.2% and 17.8 ± 7.4% were recorded. 

 

In addition, light microscopic observations were made on Caco-2 cells treated for 24 h 

with PhIP-M1. As shown in Figure 5.3 A, only limited morphological changes were observed 

between the solvent controls and the 10 µM treatment group. However, in Caco-2 cells treated 

with 100 µM PhIP-M1, dramatic changes (Levin et al., 1999) were observed: cell shrinkage 

and cytoplasmic condensation. Cells retracted from their neighboring cells, rounded up and 

eventually floated into the medium, which are indicative for apoptosis (Geng and Libby, 

2002). 
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3.2 Evaluation of the role of PhIP-M1 in apoptosis  

The morphological changes in Caco-2 cells and the LDH measurements suggested 

PhIP-M1 induced apoptotic cell death and only very limited cell necrosis. To substantiate this 

hypothesis, cells were treated for 24 h with increasing concentrations of PhIP-M1 (10-300 

µM) and morphological changes in cell nuclei were examined through fluorescence 

microscopy after DAPI staining. Normal nuclei show normal distribution of euchromatin and 

heterochromatin with homogeneous fluorescence intensity. In contrast, upon PhIP-M1 

exposure, various stages of the apoptotic process could be observed: chromatin condensation, 

characteristic of early morphological nuclear manifestations of apoptosis and nuclear 

fragments with membrane-bounded apoptotic bodies as the latter event of PhIP-M1-initiated 

apoptosis in Caco-2 cells (Figure 5.3 B). Interestingly, at the lower PhIP-M1 concentrations a 

significant increase in cells showing chromosome replication and chromatid segregation 

could be observed, providing evidence for a G2/M arrest. 

 

 
Figure 5.3  (A) Photomicrographs of the effects of PhIP-M1 on Caco-2 cells. (B) 

Morphological changes in cell nuclei as determined by fluorescence 

microscopy after DAPI staining. Arrows indicate apoptotic nuclei. Cells were 

treated with PhIP-M1 for 24 h at the concentrations indicated in the figure. 

 

To further evaluate the significance of these morphological observations with respect to 

apoptosis, annexin V-FITC staining was performed on cells treated with PhIP-M1 (10-300 
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µM). The percentage of apoptotic cells after treatment with different concentrations of PhIP-

M1 for 3 and 24 h are presented in Figure 5.4.  

 

 
Figure 5.4  PhIP-M1-induced phosphatidylserine externalization in Caco-2 cells. PhIP-

M1-induced apoptosis was assessed by determining the percentage of annexin 

V+/PI- cells after 3 h and 24 h treatment. Data are expressed as means ± SE of 

at least 3 independent experiments. Significantly different (Student’s t-test) 

from control, * p < 0.05; ** p < 0.01.  

 

Apoptosis in sub-confluent Caco-2 cells was significantly induced by PhIP-M1 in both 

a concentration-dependent and a time-dependent manner. Moreover, for the higher incubation 

concentrations (200-300 µM) during the 24 h exposure, a significant increase in the number 

of PI+ cells, which are considered late apoptotic, was observed with an average percentage of 

28.7 ± 2.7 at 300 µM (Figure 5.5 A-C). However, PhIP at the highest concentration of 300 

µM, did not significantly induce phosphatidylserine externalization (Figure 5.5 D). 

 

3.3 Induction of cell cycle arrest by PhIP-M1 

In order to determine whether PhIP-M1 had any effect on progression through cell 

cycle, Caco-2 cells were treated with increasing concentrations (< IC30) of PhIP-M1 (0-100 

µM) for 3 or 24 h. As depicted in Figure 5.6 B, exposure to relatively low concentrations (1-

10 µM) of PhIP-M1 resulted after 24 h in a dose-dependent significant increase in the G2/M 

cell population, accompanied by a decrease in G0/G1 and S cell populations.  
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Figure 5.5   FACS analysis of apoptosis in Caco-2 cells exposed for 24 h to (A) solvent 

control, (B) 100 µM PhIP-M1, (C) 300 µM PhIP-M1 and (D) 300 µM PhIP. 

 

Cells treated with concentrations higher than 35 µM showed again a decrease in G2/M 

cell population to eventually become even lower than the control treatment at 100 µM and 

result in a significant increase in S cell population. From Figure 5.6 A, it can be seen that after 

3 h PhIP-M1 already affected the cell cycle. A similar increase in G2/M cell population at 

concentrations below 35 µM, accompanied by a decrease in G0/G1 cell population was 

observed. At concentrations higher than 35 µM, the G2/M population started to decrease 

again but at this time point no pronounced effects on the S-phase were observed, while at the 

highest concentration (200 µM) a significant increase in G0/G1 nucleoids was measured. At 

the same concentration range and exposure time, PhIP, without any metabolic activation, 

failed to affect the cell cycle profile. 
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Figure 5.6   Percentage of cells in each stage of cell cycle after treatment with PhIP-M1 in 

Caco-2 cells for (A) 3 h and (B) 24 h. Data are expressed as means ± SD of at 

least 3 independent experiments. Significantly different (Student’s t-test) from 

control, * p < 0.05; ** p < 0.01.  

 

3.4 DNA damage in Caco-2 cells exposed to PhIP-M1 

In accordance with the guidelines proposed by Tice et al. (2000), the decrease in cell 

viability should not be more than 30% when compared with the concurrent control. Therefore 

it was decided to undertake the subsequent genotoxicity study by using a PhIP-M1 
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concentration range peaking at 200 µM, corresponding to the lowest calculated IC30 (3 h 

exposure). In parallel with the comet assay, as a critical component in data interpretation, 

cytotoxicity was measured in all samples analyzed for DNA damage using the MTT assay 

and the halo or LMW DNA diffusion assay.  

 

The median comet tail moments, the mitochondrial viability and the percentage of Type 

II cells upon exposure of Caco-2 cells to different concentrations of PhIP-M1 are shown in 

Table 5.2. Also the data for PhIP, without any metabolic activation, solvent and positive 

MMS controls are presented in Table 5.2.  

 

Table 5.2. DNA damage, cytotoxicity and Low Molecular Weight DNA diffusion in 

Caco-2 cells as estimated by the median Olive Tail moment, the mean 

mitochondrial viability (± SD) and the mean percentage of Type II cells (± SD) 

in the halo assay (Type IIa: halo with nucleus, Type IIb: halo without nucleus) 

after 3 h exposure to various PhIP-M1 concentrations. Significantly different 

from control, * p < 0.05; ** p < 0.01.  

Comet assay MTT assay Halo assay Treatment 

Median OTM  % viability % Type IIa % Type IIb % Total Type II  

PhIP-M1 (µM)      
   0 0.56 100 ± 0.0 7.3 ± 0.35 5.5 ± 0.50 13 ± 0.35 
   10 0.59 98 ± 2.8 7.3 ± 2.5 4.0 ± 2.2 12 ± 2.8 
   50 0.75 93 ± 13 7.8 ± 1.8 7.5 ± 1.8 15 ± 0.35 
   100 1.1 * 93 ± 9.9 11 ± 3.7 7.5 ± 1.6 18 ± 2.8* 
   150 1.2 * 79 ± 17 17 ± 7.2 12 ± 0.35 29 ± 7.5* 
   200 3.0 ** 72 ± 16* 27 ± 2.2 17 ± 2.0 44 ± 3.4** 

PhIP (µM)      
   180 0.52 84 ± 24 13 ± 2.9 8.5 ± 1.6 21 ± 2.0** 

MMS (mM)      
   0.1 3.2 ** 91 ± 15 56 ± 16.9 9.5 ± 4.9 66 ± 12.0** 
   1 28 ** 73 ± 12* 0.0 ± 0.0 100 ± 0.0 100 ± 0.0** 

 
It can be seen from Table 5.2 that PhIP-M1 evoked a dose-dependent (p < 0.01, 

Kruskal-Wallis) increase in the median comet tail moment of the intestinal cells, but within 

the same concentration-range a dose-dependent increase in LMW DNA diffusion was 

observed. This significant increase in Type II cells and comet tail moment was also observed 

in a dose-dependent manner for the positive control MMS, while native PhIP evoked a 
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significant increase in LMW DNA diffusion, but did not modify the comet tail moment. The 

mitochondrial viability remained for the different PhIP-M1 concentrations and control 

samples above 70%.  

 

The most straightforward way to interpret data from the comet assay is by presenting 

the distribution of the cells according to the percentage of DNA in the tail, which is positively 

correlated with the comet tail moment. From Figure 5.7 it can be seen that PhIP-M1 treatment 

caused a dose-dependent decrease in the number of cells with OTM values from 0-0.99 and 1-

1.99 and a dose-dependent increase in the number of cells with OTM classes 2-9.99, 4-9.99 

and >10. 

 

 
Figure 5.7   Frequency of DNA damage of Caco-2 cells exposed to various concentrations 

of PhIP-M1 after 3 h exposure.  

 

4. Discussion 
In the present study, we examined the cellular and genetic events caused by the newly 

identified microbial PhIP metabolite, PhIP-M1, on intestinal cells in the in vitro Caco-2 

model. We have demonstrated that PhIP-M1 significantly decreases the mitochondrial 

dehydrogenase activity, the membrane integrity and the protein synthesis of Caco-2 cells in a 

time- and dose-dependent manner. Morphological examination, LDH release, DAPI nuclear 
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staining and annexin V-FITC staining suggested that the predominant effect of PhIP-M1 on 

Caco-2 cell viability was due to the induction of apoptosis. Cell cycle analysis revealed a 

G2/M arrest at lower concentrations and S arrest at higher concentrations as a consequence of 

PhIP-M1 exposure. In addition, the data presented showed that PhIP-M1 evoked a dose-

dependent increase in DNA strand breaks in Caco-2 cells, as measured by the comet tail 

moment and LMW DNA diffusion assay. 

 

In general, the cytotoxic or growth inhibiting effects from PhIP-M1 were similar in 

most assays. Gooderham et al. (2007) reported a PhIP IC30 value of ± 35 µM and IC50 value 

of ± 100 µM in MCF10A cells in co-culture with metabolically active MCL-5 cells treated 

with PhIP for 24 h and measured using the trypan blue dye assay. The cytotoxicity of P450-

activated PhIP in MCF10A cells is thus slightly lower than that of PhIP-M1 measured in our 

culture system using trypan blue exclusion. This trypan blue exclusion assay, however, 

showed significantly lower IC30 and IC50 values at the 24 and 72 h exposure periods than the 

MTT and SRB assays. This could be due to apoptotic cells easily washed away by our 

procedure. Within the concentration range which provoked 50% of protein synthesis 

inhibition after a 24 h treatment (173 ± 20.3 µM), 50% of mitochondrial activity inhibition 

(180 ± 39.4 µM) and a 50% decrease in cell number (46.9 ± 4.5 µM), morphological changes, 

resembling apoptosis were indeed observed. These data are in line with the results of Martin 

et al. (1990), who observed apoptosis in human leukemia HL-60 cells when protein synthesis 

was inhibited by several anti-cancer drugs. One of the early events during apoptotic cell death 

is the translocation of phosphatidylserine from the inner side of the plasma membrane to the 

outer layer without loss of membrane integrity (van Engeland et al., 1998). Loss of membrane 

integrity manifested by PI uptake in the nucleus tends to occur during the late apoptosis and 

during necrosis. Our data indicate that Caco-2 cells treated with PhIP-M1 die via apoptosis 

rather than via necrosis since low concentrations of PhIP-M1 at early time-points clearly led 

to an increase in annexin V+/PI- cells, and these alterations consequently resulted at a later 

time point or higher concentrations in an increase in PI+ stained cells. In addition, DAPI 

staining showed that PhIP-M1 induced typical features of apoptosis in Caco-2 cells, such as 

condensed chromatin and fragmented nuclei. DNA fragmentation is a typical morphological 

change observed during apoptosis (Allen et al., 1997). This phenomenon is caused by specific 

endonucleases that cleave chromatin at the linker regions between nucleosomes resulting in 
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extensive fragmentation of DNA into subnucleosomal subunits of 180 to 200 bp 

(Darzynkiewicz and Traganos, 1998).  

 

The hallmarks of apoptosis and its related DNA fragmentation can be revealed by the 

alkaline version of the comet assay. Therefore in parallel with the comet assay, the halo assay 

or LMW DNA diffusion assay was performed on each sample (Godard et al., 1999). Under 

these conditions, we were able to quantitatively detect cells with highly fragmented DNA. 

Interestingly, MMS significantly induced the formation of type II cells in the halo assay, 

implying that excessive DNA damage, not specifically linked to the incidence of apoptosis, 

but related to genotoxic events, may as well lead to the diffusion of DNA during the alkaline 

halo assay. PhIP, without any metabolic activation, however, gave rise to a slight increase in 

cytotoxicity as measured by the MTT assay and the LMW DNA diffusion, but did not 

increase the comet tail moment, demonstrating that cytotoxicity within our assay system, did 

not lead to false positive results. In addition, the number of cells presenting a halo pattern 

upon PhIP-M1 exposure was higher than the number of apoptotic cells as detected by the 

annexin V-FITC staining method (44 ± 3.4 vs. 32 ± 6.2 for 200 µM), while it is generally 

accepted that the annexin V assay detects one of the early stages of the apoptotic process 

(Vermes et al., 1995; van Engeland et al., 1998) and therefore is more sensitive in the 

detection of early and late apoptotic cells than the halo assay (Godard et al., 1999). 

Furthermore, apoptotic nucleosomal fragmentation of DNA leads to characteristic highly 

damaged figures with the comet assay, with no or very small heads and nearly all the DNA in 

the tail (Hartmann and Speit, 1997). Such highly damaged figures were scarce in our study. 

The wide distribution of the frequency of the tail moments and damage levels obtained upon 

treatment of Caco-2 cells with PhIP-M1 (Figure 5.7) are characteristic of a genotoxic effect. 

Genotoxicity usually generates varying degrees of damage in a cell population, contrasting 

with the bimodal distribution of damage, i.e. undamaged cells and cells with highly damaged 

DNA, resulting from cytotoxicity and apoptosis. The observed increase in the migration of 

DNA fragments of cells exposed to PhIP-M1 may therefore be linked with the ability of this 

newly identified microbial PhIP metabolite to induce DNA strand breaks or evoke such 

changes in the DNA structure that can be transformed into single or double strand breaks in 

the conditions of the comet assay in Caco-2 cells. Earlier research detected no direct 

mutagenic effect from PhIP-M1 in the Ames assay (Vanhaecke et al., 2008a). The difference 

observed in the outcome of the Ames assay and the comet assay could be explained by 
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differences in tested biological systems (bacteria vs. eukaryotic cells), in test conditions (agar 

vs. liquid medium), in biotransformation capacities (extracellular S9-mix vs. intracellular 

endogenous metabolism), or in detected genotoxic endpoints (point mutation vs. primary 

DNA damage). This last point is particularly crucial because the Ames assay detects a 

mutagenic effect only if the DNA damages induced by PhIP-M1 have remained after cell 

division (i.e. are stable and have not been repaired) whereas the comet assay detects all 

primary DNA damages, including the ones not causing mutagenicity. Hartmann et al. (2001) 

have indeed shown that the comet assay is capable of detecting genotoxic compounds that 

were tested negative in the Ames assay. Edenharder et al. (2002) investigated the genotoxicity 

of PhIP in metabolically competent V79 cells using the comet assay and measured a tail 

moment of 25 and 50 for 9 and 17 µM PhIP, respectively, for 24 h incubation; while Pfau et 

al. (1999) measured a significant increase in median tail moment from 200 µM on in MCL-5 

cells incubated for 3 h with PhIP. This is the first study that examined the genotoxic potential 

of PhIP-M1 in human cell lines and further research is needed to substantiate its genotoxic 

activity.  

 

Although the MTT and SRB assays can be suitable for the determination of changes in 

the functional and metabolic capability of cells under toxic stress and the trypan blue 

exclusion assay gives an indication about the absolute amount of cells and their plasma 

membrane integrity, those do not necessarily yield specific information on the detailed events 

associated with cell death. Therefore flow cytometry was applied to determine the effect of 

PhIP-M1 on the cell cycle and mode of action of cell death in greater detail. In the presence of 

PhIP-M1 between 1 and 35 µM, a significant decrease in the percentage of nucleoids in 

G0/G1 phase was accompanied by a significant increase in the percentage of nucleoids in 

G2/M phase. However, at higher concentrations, the percentage of nucleoids in the G2/M 

phase reached its control level again and a significant increase in S cell phase was observed. 

CYP450-activated PhIP has been shown to induce G1 or S checkpoint in MCF10A or TK6 

cells, respectively (Zhu et al, 2000; Gooderham et al., 2002; Gooderham et al., 2007), while 

PhIP-M1 in our cell system caused G2 and S phase cell cycle arrest. Arrest at G2/M phase is 

indicative of inhibition of the cell cycle at stages of chromosome segregation (Yuan et al., 

2005), while arrest at S-phase is indicative of inhibition of DNA replication (Kaufmann, 

2007). This cell cycle arrest may be an adaptive process in which a surveillance mechanism 

delays or arrests the cell cycle when DNA damage is encountered (Shimada and Nakanashi, 
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2006). Other studies have demonstrated the ability of cells to delay or arrest their 

multiplication cycle in G0/G1, S or G2/M in order for repair to take place (Lane, 1992; Thorn 

et al., 2001; Plesca et al., 2007). DNA damage caused by numerous alkylating agents or 

cross-linking agents (Tokunaga et al., 2000; Zhu et al., 2000; Park et al., 2004) in various cell 

types has been associated with G2/M or S phase delay or arrest. The possible initiation of 

repair processes may explain the moderate absolute damage levels induced by PhIP-M1 and 

the relative high concentrations of PhIP-M1 required to detect the incidence of DNA damage 

in Caco-2 cells. It is apparent that for cells with unrepairable DNA, or with too many 

repairable DNA lesions, the apoptotic pathway is the only option for a cell (Lowe et al., 

1993a; Lowe et al, 1993b). Consistent with our hypothesis, the DNA damage caused by PhIP-

M1, under the incubation conditions in this study, did not only initiate cell cycle arrest in 

Caco-2 cells, but also induced a significant, dose-dependent increase in the percentage of 

apoptotic cells. These results are consistent with the three processes being related to one 

another. The following sequence of events may thus be proposed for PhIP-M1 induced 

activity: (i) cells exposed to increasing concentrations of PhIP-M1 sustain DNA damage as 

demonstrated by the comet assay; (ii) the DNA lesions or DNA fragmentations require repair, 

and the heavy demand for repair activity triggers cell cycle arrest in the G2/M phase of Caco-

2 cells; and (iii) in cells for which PhIP-M1 concentrations are high enough and damage 

persistent enough, the repair capability is exceeded and the apoptosis pathway is initiated, 

leading eventually to cell death and growth inhibition. The occurrence of apoptotic cell death 

at a very early time point (3 h) and the relative high ratio of apoptotic cells compared to those 

exerting a cell cycle delay however suggests that an additional mode of action by which PhIP-

M1 causes apoptosis might exist. The molecular toxicity of PhIP-M1 might be explained by a 

ring opening of PhIP-M1 into its aldehydic function. Many aldehydes modify DNA resulting 

in a mutagenic activity and are known to exert cytotoxic and oxidative effects (O’Brien et al., 

2005). Further research is however required to provide evidence for this ring opening of PhIP-

M1 and unravel the mechanistic basis of this high apoptotic ratio of PhIP-M1 under in vitro 

conditions. 

 

Daily human exposure to PhIP in foodstuffs and concentrations of PhIP-M1 measured 

in urine and fecal samples of humans consuming average amounts of meat are 2-3 orders of 

magnitude below the concentrations used in this study. As the molecular and cellular effects 

observed in different cell systems with CYP450-activated PhIP are not significantly larger 
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than those observed for PhIP-M1 in our test system, the potential physiological relevance of 

our newly identified microbial metabolite in PhIP carcinogenicity must be taken into account. 

Given the ability of PhIP-M1 to initiate DNA damage and disrupt the cell cycle, further 

assessment of the potential role of this newly identified microbial metabolite of the IARC 2B 

carcinogen PhIP may be desirable in the light of factors such as potential accumulation and 

possible additive or synergistic effects with the DNA-reactive N-OH-PhIP derivate or other 

dietary components. 
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CHAPTER 6CHAPTER 6   
 

Chemopreventive effects from prebiotic inulin towards microbial 

2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine bioactivation 

 

ABSTRACT 

Inulin is frequently studied for its prebiotic potential as it stimulates health-promoting 

bacteria in the human intestine. Inulin is also hypothesized to exert inhibitory effects towards 

hazardous biotransformation reactions from the resident colon microbiota. Using a Simulator 

of the Human Intestinal Microbial Ecosystem (SHIME), we investigated the chemopreventive 

potential of chicory inulin towards the in vitro bioactivation of 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP) by human intestinal microbiota. Additionally, prebiotic 

effects were evaluated by monitoring the metabolic activity and community structure from the 

microbiota in the different colon compartments. HPLC data revealed that inulin significantly 

decreased the formation of the genotoxic PhIP-M1 metabolite, with the highest inhibitory 

activity in the colon ascendens (87% decrease). Interestingly, this chemopreventive effect, 

correlated with alterations of bacterial community composition and metabolism in the 

different colon compartments. Conventional culture-based techniques and PCR-DGGE 

analysis on the SHIME colon suspension revealed significant bifidogenic effects during inulin 

treatment, whereas the overall microbial community kept relatively unchanged. Additionally, 

short chain fatty acid production increased with 12%, 3% and 7%, while ammonia 

concentrations decreased with 3%, 4% and 3% in the ascending, transverse and descending 

colon compartments, respectively. This indicates that the prebiotic effects from inulin may 

also purport protective effects towards microbial PhIP bioactivation. As the colonic 

microbiota may contribute significantly to the carcinogenic potential of PhIP, the search for 

dietary constituents that decrease the formation of this harmful metabolite, may help in 

preventing its risk towards human health.  
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1. Introduction 

Dietary epidemiological studies implicate heterocyclic amines (HCAs), 

mutagenic/carcinogenic compounds formed from high-protein diets during cooking, as risk 

factors in the etiology of human cancer (Felton et al., 2005). Of the 19 heterocyclic amines 

identified so far, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most mass 

abundant heterocyclic amine produced during the cooking of beef, pork and chicken (Felton 

et al., 1986a; Murray et al., 1993; Sinha et al., 1995; Wong et al., 2005). Experimentally, 

PhIP is a potent mutagen and genotoxin and has been shown to produce mammary gland, 

prostate and colon tumors in rats (Ito et al., 1991; Shirai et al., 1997; Sugimura, 2000). In 

humans, less is known about the potential role of PhIP and related heterocyclic amines in 

tumor development. Several studies have shown that individuals who eat well-done meat have 

an elevated risk of breast (Zheng et al., 1998) and colorectal (Sinha, 1995; Gunter et al., 

2005) cancers.  

 

In realizing its mutagenic potential, PhIP requires metabolic activation by drug 

metabolizing enzymes (Aeschbacher and Turesky, 1991). In common with other genotoxic 

aromatic amines, PhIP is metabolically activated via oxidation of the exocyclic amino group, 

a reaction mainly mediated by the cytochrome P450 isoenzyme CYP1A2 (Crofts et al., 1998; 

Turesky et al., 2002). While PhIP is biotransformed into a large number of derivates by 

mammalian enzyme systems, the human intestinal microbiota selectively convert PhIP into 

one major metabolite, 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]-

imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1) (Vanhaecke et al., 2006). This compound 

has been detected in human urine and feces following consumption of well-done chicken 

meat and does not act as a direct mutagen in the Ames assay (Vanhaecke et al., 2008a), but 

exerts genotoxic and cytotoxic effects towards the human intestinal Caco-2 cell line and is 

therefore considered as a toxified PhIP derivate (Vanhaecke et al., 2008c).  

 

During the last decades strong efforts have been made to identify dietary constituents, 

which protect against the genotoxic and carcinogenic effects from HCAs. More then 600 

complex mixtures and individual compounds contained in the human diet have been studied 

for their chemopreventive effects towards HCAs (Schwab et al., 2000). Among them, dietary 

fibers and lactic acid bacteria are known to bind and prevent the absorption of HCAs 

(Ferguson and Harris, 1996; Bolognani et al., 1997), while cruciferous vegetables induce 
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phase I and phase II metabolism in humans. Inulin type fructooligosaccharides, which are 

selectively fermented by beneficial microorganisms in the colon, have been shown to exert 

their chemopreventive effects through alteration of bacterial metabolism in the distal gut 

(Humblot et al., 2004) and proved more potent in comparison to oligofructose and Brussels 

sprouts in preventing 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced genotoxicity in 

colonocytes from HFA rats. Evidence on the mechanisms by which inulin may decrease the 

carcinogenic risk from IQ has been recently provided. Hydrolysis of heterocyclic amine-

glucuronides by bacterial β-glucuronidase has shown to be essential for colonic IQ 

genotoxicity (Humblot et al., 2007). The impact of prebiotic inulin on the bacterial 

bioactivation of native heterocyclic amines has however not been investigated yet. 

 

In vivo experiments are the most representative approach for evaluating the effects of 

prebiotics administration, since physiological parameters and interactions with the host 

organism are taken into account. However, in vivo experiments are costly and time-

consuming and - especially with human trials - they investigate fecal microbiota that do not 

represent the microbial community composition from the different parts of the colon. 

Advanced in vitro reactor systems that mimic both the proximal and distal regions of the 

human colon may therefore be useful for studying human intestinal microbiota (Macfarlane et 

al., 1989; Molly et al., 1993; Minekus et al., 1999). Additionally, they give more reproducible 

results and allow mechanistic studies with several parameters under control. Such in vitro 

methods are therefore well suited for studying the influence of prebiotics on a specific 

microbial bioactivation reaction and the intestinal microbial population in terms of 

fermentation activity and community structure and this in the ascending, transverse and 

descending colon compartments, respectively. 

 

In this study, we used the Simulator of the Human Intestinal Microbial Ecosystem 

(SHIME), which harbors a microbial community resembling that from the human colon both 

in fermentation activity and composition (Molly et al., 1993; Possemiers et al., 2004). The 

aims of the study were (i) to evaluate whether inulin supplementation could decrease the 

microbial bioactivation of the IARC 2B carcinogen PhIP, (ii) to assess whether possible shifts 

in fermentation pattern, enzymatic activity and microbial composition could be attributed to 

inulin and (iii) to link potential bifidogenic or prebiotic effects from inulin with its effect on 

PhIP microbial bioactivation.  
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2. Materials and methods 

2.1 Chemicals 

PhIP was purchased from Toronto Research Chemicals (Ontario, Canada). For 

incubation purposes, it was dissolved in dimethyl sulfoxide (DMSO). PhIP-M1 (7-hydroxy-5-

methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride) 

was synthesized and purified using a procedure from previous studies (Vanhaecke et al., 

2008a). Purity of PhIP-M1 was 97 ± 0.8% as determined by LC-MS. The solvents for HPLC 

and LC-MS analysis were of HPLC grade and purchased from Acros Organics (Geel, 

Belgium).  

 

2.2 Culture system 

The SHIME is a dynamic model of the human gastrointestinal tract. It consists of 5 

double-jacketed vessels maintained at a temperature of 37 °C, respectively simulating the 

stomach, small intestine, ascending colon, transverse colon and descending colon, with a total 

retention time of 76 h. The colon vessels harbor a mixed microbial community and pH 

controllers (pH controller R301, Consort, Turnhout, Belgium) maintain the pH in the range 

5.6-5.9, 6.2-6.5 and 6.6-6.9 in the ascending, transverse and descending colon simulations, 

respectively. There is no gas exchange between the different vessels and the headspace of the 

culture system was flushed once a day for 15 min with N2 to ensure anaerobic conditions. 

Growth medium for the microbial inoculum consisted of a carbohydrate-based medium 

containing arabinogalactan (1 g/L), pectin (2 g/L), xylan (1 g/L), starch (4 g/L), glucose (0.4 

g/L), yeast extract (3 g/L), peptone (1 g/L), mucin (4 g/L) and L-cysteine (0.5 g/L). Detailed 

information about the SHIME system can be found in Molly et al. (1993). 

 

2.3 Experimental reactor setup  

At the beginning of the experiment, the last three vessels of the SHIME reactor were 

inoculated with a fecal sample derived from a healthy adult volunteer (age 22) who had no 

history of antibiotic treatment in the six months prior to the fecal sample collection and was 

characterized as a high PhIP transformer (Vanhaecke et al., 2008b). During the start-up 

period, the reactor was supplemented with basal feed medium, which enabled the microbial 

community to adapt itself to the nutritional and physico-chemical conditions that prevail in 
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the different colon vessels (Molly et al., 1993). After two weeks, the experiment was initiated 

with the basal period from day 1 to day 14, under the same conditions as during the start-up 

period. This allowed recording the basal parameters of the system prior to altering the feed 

medium during the treatment period.  On day 15, the treatment period was initiated, which 

lasted until day 35. The nutrition for the treatment period consisted of the normal compounds 

as described above, except that the amount of starch in the medium was reduced from 4 to 1 

g/L and that native chicory inulin (Fibruline Instant, COSUCRA, Warcoing, Belgium) was 

added at 3 g/L. After the treatment period, a washout period from day 36 to day 49 concluded 

the run, during which the same basal feed medium was used as during the basal period. This 

allowed seeing whether the metabolic parameters, microbial carcinogen transformation and/or 

microbial concentrations evolved towards their initial values from the basal period.   

 

2.4 Experimental setup PhIP transformation 

During the basal, treatment and washout periods, consequently on the third day of each 

week and immediately after the supplemented nutrition had reached the last vessel of the 

colon, samples were taken from each vessel (20 mL), transferred to penicillin flasks and 

supplemented with 1 mg/L PhIP and 5% fecal matrix (Vanhaecke et al., 2008b). Each batch 

was sealed with butylrubber tops and anaerobiosis was obtained by flushing the flasks with 

N2 during 15 cycles of 2 min each at 800 mbar overpressure and 900 mbar underpressure. 

Cultures were incubated at 37 °C and 150 rpm during 96 h. Samples were taken every 24 h 

for HPLC analysis. 

 

2.5 PhIP and PhIP-M1 analysis  

PhIP and PhIP-M1 analyses were performed according to Vanhaecke et al. (2008b) on a 

Dionex HPLC system (Sunnyvale, California, USA) comprising an autosampler ASI-100, a 

pump series P580 and a STH585 column oven coupled to a fluorescence detector RF-2000. 

Briefly, a 10 µL volume of the sample was injected and separated over a Zorbax-Extend C18 

column (150 mm x 4.6 mm, 5 µm) (Agilent technologies, Diegem, Belgium). The 

temperature was set at 25 °C and the flow rate was maintained at 1 mL/min. Solvents were A: 

0.01% formic acid and B: acetonitrile. Solvent programming was isocratic: 2% B in 2 min 

followed by a linear gradient to 40% by 20 min. Fluorescence was monitored at 316 nm 
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(excitation) and 370 nm (emission). Data were collected and peaks integrated using the 

Chromeleon chromatography manager software (Dionex).  

 

2.6 Metabolic activity analysis 

Liquid samples were collected daily during the entire SHIME run and kept frozen at -20 °C 

for subsequent analysis. 

 
2.6.1 Short chain fatty acids (SCFAs) 

The SCFAs were extracted from the samples with diethyl ether and analyzed on a 

Di200 gas chromatograph (Shimadzu, 's-Hertogenbosch, The Netherlands) equipped with a 

EC-1000 Econo-Cap column (Alltech, Laarne, Belgium; dimensions: 25 m x 0.53 mm, film 

thickness 1.2 µm) and a flame ionization detector with a Delsi Nermag 31 integrator (Thermo 

Separation Products, Wilrijk, Belgium). Nitrogen was used as a carrier gas at a flow rate of 20 

mL/min and the column temperature and injector temperature were set at 130 and 195 °C, 

respectively. 2-Methyl hexanoic acid was used as an internal standard. 

 

2.6.2 Ammonia 

Using a 1062 Kjeltec Auto Distillation apparatus (FOSS Benelux, Amersfoort, The 

Netherlands), ammonium in the samples was liberated as ammonia by the addition of an 

alkali (MgO). The released ammonia was distilled from the sample into a boric acid solution 

(20 g/L). This solution was subsequently titrated using a 665 Dosimat (Metrohm, Berchem, 

Belgium) and 686 Titroprocessor (Metrohm). 

 

2.6.3 Proteolytic markers 

Phenol and p-cresol were extracted from the SHIME samples with ethyl acetate and 

analyzed on a Dionex HPLC system (Sunnyvale, California, USA) comprising an 

autosampler ASI-100, a pump series P580 and a STH585 column oven coupled to a 

fluorescence detector RF-2000. A 10 µL volume of the sample was injected and separated 

over a Zorbax-SB C18 column (150 mm x 4.6 mm, 5 µm) (Agilent technologies, Diegem, 

Belgium). Solvents were A: 2% acetic acid and B: acetonitrile. The temperature was set at 25 

°C and the flow rate was maintained at 1 mL/min. Solvent programming was isocratic: 2% B 
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in 2 min followed by a linear gradient to 60% by 20 min. Fluorescence was monitored at 260 

nm (excitation) and 305 nm (emission). 4-Ethylphenol was used as an internal standard. 

 

2.6.4 Enzyme analysis 

The samples were centrifuged at 10000 x g for 10 min. Cell free supernatant (100 µL) 

was transferred into a 96-well plate, with 100 µL of a 5.0 mM substrate, prepared in 0.1 mM 

phosphate buffer (pH 6.5). The substrate (Sigma, Bornem, Belgium) used was p-nitrophenyl-

β-glucuronide for β-glucuronidase. The plates were incubated at 37 °C and the absorbance at 

405 nm recorded after 30 min on a multiwellreader (SunriseTM, Tecan Benelux BVBA, 

Mechelen, Belgium). The amount of p-nitrophenol released was measured based on a 

standard curve of p-nitrophenol. The results were expressed in µmol p-nitrophenol released.  

 

2.7 Microbial community analysis 

2.7.1 Plate counting 

To assess the effect of inulin on the large groups of bacteria in the different 

compartments of the SHIME reactor, plate counts were performed on Brain Heart Infusion 

agar (total aerobes and total anaerobes), Tryptose Sulphite Cycloserin agar (clostridia), 

Raffinose Bifidobacterium agar (bifidobacteria), LAMVAB agar (lactobacilli), Enterococcus 

agar (enterococci), Mannitol Salt agar (staphylococci) and Martin agar (fungi and yeasts). 

Liquid samples were withdrawn from the culture system and serially diluted in saline solution 

(8.5 g NaCl/L). Three plates were inoculated with 0.1 mL sample of three dilutions, and 

incubated at 37 °C (43 °C for E. coli). Anaerobic incubation of plates was performed in jar 

with a gas atmosphere (84% N2, 8% C02, and 8% H2) adjusted by the Anoxomat 8000 system 

(Mart, Sint-genesius-Rode, Belgium). 

 

2.7.2 PCR-DGGE  

The protocol for total DNA extraction from the SHIME samples was described earlier 

(Boon et al., 2000). Two microbial groups were analyzed: general bacteria and bifidobacteria. 

A nested PCR approach (Boon et al., 2002) was used to amplify the 16S ribosomal RNA 

genes of the bifidobacteria. In brief, one µL of the DNA was amplified using the primers 

BIF164f-BIF662r (Satokari et al., 2001). When the first PCR round gave a clearly visible 

band, a second amplification round with forward primer P338f (with a GC-clamp of 40 bp) 
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and reverse primer P518r was used (Muyzer et al., 1993). The 16S rRNA of all bacteria was 

amplified by applying primers P338f with GC-clamp and P518r on total extracted DNA. 

 

 Denaturing gradient gel electrophoresis was performed as described earlier using the 

Bio-Rad D Gene System (Bio-Rad, Hercules, CA, USA) (Muyzer et al., 1993). PCR 

fragments were loaded onto 8% (w/v) polyacrylamide gels in 1 × TAE (20 mM Tris, 10 mM 

acetate, 0.5 mM EDTA, pH 7.4). On each gel, a home made marker of different PCR 

fragments was loaded, which was required for processing and comparing the different gels 

(Boon et al., 2002). The polyacrylamide gels were made with a denaturing gradient ranging 

from 45% to 60%. The electrophoresis was run for 16 h at 60 °C and 38 V. Staining and 

analysis of the gels was performed as previously described (Boon et al., 2000). The 

normalization and analysis of DGGE gel patterns was done with the BioNumerics software 

2.0 (Applied Maths, Kortrijk, Belgium). The calculation of the similarity matrix was based on 

the Pearson correlation coefficient. Clustering algorithm of Ward was used to calculate 

dendrograms (Ward, 1963). 

 

2.7.3 DNA sequencing 

16S rDNA gene fragments were cut out of the DGGE gel with a clean scalpel and added 

to 50 µL of PCR water. After 12 hours of incubation at 4 °C, 1 µL PCR water was 

reamplified with primer set P338f and P518r. Five µL PCR product was loaded on a DGGE 

gel (see above) and if the DGGE pattern only showed 1 band, it was sent out for sequencing. 

DNA sequencing of the ca. 180 bp fragments was carried out by ITT Biotech-Bioservice 

(Bielefield, Germany). Analysis of DNA sequences and homology searches were completed 

with standard DNA sequencing programs and the BLAST server of the National Center for 

Biotechnology Information (NCBI) using the BLAST algorithm (Boon et al., 2002).  
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3. Results 

3.1 PhIP bioactivation during the SHIME run 

To evaluate whether inulin supplementation could affect the microbial PhIP 

bioactivation, PhIP-M1 production was monitored by incubating PhIP at a concentration of 1 

mg/L in mixed microbial suspensions retrieved from the three different colon compartments 

of the SHIME reactor throughout the basal, treatment and washout periods. PhIP 

bioactivation was evaluated by measuring PhIP-M1 production over a 5 day time-window 

using HPLC analysis (Figure 6.1). Average basal microbial PhIP transformation efficiencies 

of respectively 17.7 ± 1.2, 89.7 ± 12.4 and 79.2 ± 23.2% in the colon ascendens, transversum 

and descendens were measured. In the colon ascendens, inulin supplementation initially led to 

a large increase in PhIP-M1 formation, followed by a subsequent decrease during the second 

and third week of inulin treatment. The PhIP transformation potency of the microbial 

community was however restored during the washout period, reaching basal levels again. In 

the colon transversum and descendens a clear decrease in PhIP transformation was observed 

upon inulin supplementation. This effect was more pronounced in the transverse colon, where 

only 2.6% of the initial PhIP dose was converted after three weeks of treatment. In both 

compartments the PhIP-M1 production reached their basal levels again during the washout 

period.  

 
3.2 Metabolic activity during the SHIME run 

Replacement of starch by a metabolic equivalent amount of chicory inulin in the feed of 

the SHIME shifted the microbial fermentation pattern in the three different colon vessels 

towards a more saccharolytic metabolism (Table 6.1).  

 
This metabolic shift resulted in an increase in total SCFA production with 20%, 5.2% 

and 9.9% in the ascending, transverse and descending colon, respectively at the end of the 

three-week treatment period. It was noted that the increase in SCFA production primarily 

originated from an increased production of propionate and butyrate, while only in the colon 

ascendens a significant increase in acetate concentration was observed. This generally higher 

total SCFA production was only prolonged in the colon descendens during the washout 

period, although the significant increases in propionate and butyrate concentrations were 

maintained in the colon ascendens, transversum and descendens. 
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Figure 6.1 Conversion of PhIP into PhIP-M1 by mixed fecal microbiota sampled from the 

ascending, transverse and descending colon throughout the basal (day 1 and 8), 

treatment (day 15, 22 and 29) and washout (day 36 and 43) periods in which 

inulin was tested for its chemopreventive potential. PhIP-M1 formation upon 

incubation was for each sampling point monitored during 5 consecutive days.  
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Table 6.1. Concentration of short-chain fatty acids (SCFAs), NH4
+ and phenol in vessels 

3,4 and 5 of the SHIME during the basal (n = 4), treatment with inulin (n = 4) 

and washout periods (n = 4). Data are means ± SD.  

Parameter Ascending colon Transverse colon Descending colon 
 mmol/L suspension 

Basal period    
    Acetic acid 30.4 ± 2.3 33.7 ± 1.0 37.1 ± 1.9 
    Propionic acid 11.6 ± 1.0 14.2 ± 0.5 14.5 ± 1.5 
    Butyric acid 3.4 ± 0.8 4.5 ± 0.5 5.6 ± 0.5 
    Branched SCFAs 0.6 ± 0.1 2.4 ± 0.1 2.6 ± 0.1 
    
    Total SCFAs 46.1 ± 3.4 54.9 ± 1.4 60.1 ± 2.6 
    
    Ammonium 18.4 ± 4.1 23.0 ± 1.7 25.9 ± 1.0 
    Phenol (7.1 ± 8.3) x 10-3 (113.3 ± 51.0) x 10-3 (136.2 ± 48.8) x 10-3 
    
Treatment period    
    Acetic acid 36.2 ± 3.0** 34.7 ± 4.4 39.5 ± 1.7* 
    Propionic acid 15.7 ± 1.1** 15.7 ± 2.3 17.4 ± 0.3** 
    Butyric acid 4.6 ± 0.8* 5.2 ± 0.8 6.7 ± 0.1** 
    Branched SCFAs 1.0 ± 0.9 2.3 ± 0.2 2.7 ± 0.02* 
    
    Total SCFAs 57.7 ± 4.1** 58.0 ± 7.4 66.7 ± 2.0** 
    
    Ammonium 15.5 ± 2.5 19.5 ± 4.4* 23.0 ± 5.1 
    Phenol (18.9 ± 7.6) x 10-3 (83.8 ± 35.4) x 10-3 (90.7 ± 12.5) x 10-3 * 
    
Washout period    
    Acetic acid 29.4 ± 1.5°° 30.9 ± 2.9 38.5 ± 1.1 
    Propionic acid 14.3 ± 0.8**° 16.4 ± 1.6* 17.6 ± 1.4** 
    Butyric acid 5.4 ± 0.6** 5.9 ± 0.7**° 7.3 ± 0.5**° 
    Branched SCFAs 2.2 ± 0.2**° 2.7 ± 0.2*° 2.9 ± 0.1**°° 
    
    Total SCFAs 51.3 ± 2.5*° 56.0 ± 5.4 66.8 ± 2.9** 
    
    Ammonium 20.4 ± 9.2 25.4 ± 1.7*°° 28.2 ± 2.4*° 
    Phenol (20.7 ± 10.5) x10-3 (36.3 ± 20.1) x 10-3 *° (32.1 ± 11.2) x 10-3**°° 
Significantly different from the basal period: *, p < 0.05; **, p < 0.01. 

Significantly different from the treatment period: °, p < 0.05; °°, p < 0.01. 

 

During inulin administration, ammonia concentrations significantly decreased in the 

transverse colon vessel, whereas no significant changes were observed in the other colon 

vessels. In the washout period ammonia levels increased again and became significantly 

higher in the colon transversum and descendens than during inulin supplementation. As for 
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phenol, a non-significant decrease was observed in the transverse and descending colon 

compartments. This decrease was prolonged throughout the washout period, reaching a 

significant difference with the basal period in both vessels. The enzymatic β-glucuronidase 

activity and p-cresol were monitored in the respective colon compartments and did not change 

significantly during the entire SHIME run (data not shown). 

 

3.3 Microbial community analysis 

3.3.1 Plate count analysis 

Using selective growth media, analysis of the microbial suspension from the SHIME 

colon compartments revealed that inulin administration had limited effects on the overall 

microbial composition of the SHIME community, although significant increases in the 

amount of total anaerobes were observed in all colon vessels (Figure 6.2). This increase was 

most pronounced in the colon ascendens (0.5 log CFU increase). Concentrations of the 

beneficial microbial group, bifidobacteria, increased in all colon vessels throughout the inulin 

treatment, yet only significant in the colon ascendens (p < 0.05). During the washout period, 

starch again replaced inulin in the nutrition of the SHIME reactor. The increases in number of 

total anaerobes and bifidobacteria were maintained after inulin supplementation. For the 

ascending, transverse and descending colon compartments respectively, bifidobacteria 

concentrations were 0.6, 0.4 and 0.5 log CFU higher during the washout than during the basal 

period (Figure 6.2).  

 

3.3.2 Microbial fingerprinting and sequencing 

PCR-denaturing gradient gel electrophoresis was used as a molecular fingerprint 

technique to monitor qualitative changes in the composition of the microbial community from 

the three colon compartments throughout the SHIME run. Samples were taken from every 

colon vessel once a week during the entire SHIME run. Thus, for the three colon 

compartments a total of 21 samples were collected and DGGE fingerprinting and cluster 

analysis were performed for general bacteria and bifidobacteria.  

 

The global fingerprint for general bacteria showed that all samples from the colon 

descendens clustered in separate group, while the samples from the ascending and transverse 

colon clustered together in another group (Figure 6.3). 
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Figure 6.2 Plate count analysis of total aerobic and anaerobic bacteria, clostridia, 

bifidobacteria, enterococci, staphylococci, lactobacilli and fungi in the 

ascending, transverse and descending colon vessels of the SHIME reactor 

during the basal (n=4), treatment (n=6) and washout (n=4) periods. Bars 

represent SD values of the different replicates. Basal;  treatment; 

washout. Significantly different from the basal period: *, p < 0.05; **, p < 

0.01. 
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Figure 6.3 DGGE fingerprint patterns and clustering analysis for general bacteria sampled 

from the ascending (asc), transverse (trans) and descending (desc) colon 

compartments. Samples 1 and 2 were taken during the basal period, samples 

3,4 and 5 were taken during the treatment period, samples 6 and 7 were taken 

during the washout period. 

 

Both within the descending colon group as within the ascending/transverse colon group, 

the effect of inulin supplementation was observed by the separate clustering of the washout 

periods and the inulin treatment periods. Although this inulin effect was slightly apparent, the 

dominant factor for clustering was the colon compartment itself, from which the samples 

were taken. This roughly corresponds to the limited variations in microbial populations that 

were observed using conventional plating techniques. This was in contrast to the clustering 

analysis of DGGE patterns for the bifidobacteria. For this bacterial group, the dominant factor 

for clustering was the time point at which the samples were taken (Figure 6.4). In the colon 

descendens, a strong band appeared after one week of inulin supplementation, and although 

this band was weaker during the second week of inulin treatment, it regained its intensity 
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during the washout period. This band was also observed in the colon ascendens and 

descendens at the end of the inulin treatment period. The band marked ‘bif’ on the 

bifidobacteria DGGE gel revealed 98% similarity (123 out of 125 bases) to Bifidobacterium 

bifidum.  

 

 
Figure 6.4 DGGE fingerprint patterns and clustering analysis for bifidobacteria sampled 

from the ascending (asc), transverse (trans) and descending (desc) colon 

compartments. Samples 1 and 2 were taken during the basal period, samples 

3,4 and 5 were taken during the treatment period, samples 6 and 7 were taken 

during the washout period. 

 

 

 

 

 

bif 
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4. Discussion 

In this study, the chemopreventive potential of chicory inulin was demonstrated towards 

the microbial bioactivation of the pro-carcinogenic meat component PhIP into the genotoxic 

PhIP-M1 derivate. In addition, a mechanistic basis for this preventive activity was proposed. 

PhIP-M1 production has been shown to occur under proteolytic conditions and is not 

supported in the presence of merely carbohydrates (Vanhaecke et al., 2008b). As we amongst 

others (Van de Wiele et al., 2004) have demonstrated, inulin exerts prebiotic effects towards 

the in vitro-cultured colon microbiota from the SHIME reactor, in particular at the level of the 

metabolic activity, resulting in a saccharolytic fermentation pattern and acidic environment. 

This fermentational shift, which is eventually a consequence of the changes in microbial 

community composition, might explain for the protective effects detected. 

 
The protective activity from inulin against PhIP bioactivation was evidenced by a lower 

PhIP-M1 production from colon suspensions that were sampled from the SHIME reactor 

during 3 weeks of inulin treatment and that had been incubated with PhIP for 96 h. These 

chemopreventive effects occurred, in the colon transversum and descendens, already after one 

week of inulin administration at a dose of 3 g/day, which corresponds to an equivalent human 

dose of 6 g/day. This is a feasible human intake and well within the range of earlier reports 

investigating the effects of inulin in vitro and in vivo (Macfarlane et al., 2008). Similar 

inhibitory effects from inulin were previously reported towards IQ-induced genotoxicity in 

the HFA F344 rat (Humblot et al., 2004). Regarding the risk of colon cancer, inulin-type 

fructans have the capacity to suppress chemically induced colon carcinogenesis in both mice 

and rats (Pool-Zobel, 2005). Inulin-type fructans therefore are classified as negative 

modulators of the carcinogenic process. The mechanisms proposed to explain the 

chemopreventive effects towards overall carcinogenicity in the colon, or in this study, the 

microbial bioactivation of PhIP, can be explained by the prebiotic properties of inulin in the 

lumen of the gastrointestinal tract.  

 

The successful application of inulin as a prebiotic agent implies specific changes, both 

in the composition and/or activity of the gastrointestinal microbiota, which confer benefits on 

host well-being and health (Gibson et al., 2004). Administration of inulin to the nutrition of 

the SHIME reactor beneficially influenced the fermentation pattern of the colon microbiota 
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towards a significantly higher SCFA production, more in particular propionate and butyrate. 

This can be considered as highly positive given their beneficial effects on human health. 

Propionate is largely metabolized in the liver, is gluconeogenic, and may inhibit de novo 

lipogenesis (Vogt et al., 2004). Butyrate, on the other hand, is the major energy source for the 

colonocytes and has been implicated in the prevention of colitis and colorectal cancer (Roy et 

al., 2006). The increase in total SCFA production seems uncommon since the treatment 

period entailed a replacement of starch by an equivalent amount of inulin and not an addition. 

This additional SCFA production may be possibly explained by the additional bifidobacterial 

biomass, created by the bifidogenic effect from inulin. Additionally, other microbial groups in 

the colon suspension that are used to starch degradation may ferment alternative carbon 

sources from the medium to SCFA. The shift towards propionate and butyrate caused by 

inulin has been reported by other workers, both in vitro (Topping and Clifton, 2001) and in 

vivo (Uehara et al., 2001). These observations do not directly point towards bifidogenic 

effects, since bifidobacteria are acetate and lactate producers. Other microbial groups have 

however been implicated in the conversion of lactate or acetate into butyrate (Louis et al., 

2007). Recent work by Belenguer et al. (2006) has shown how butyrate-producing species 

such as Anaerostipes caccae and Eubacterium halli can cross-feed on lactate produced by 

Bifidobacterium adolescentis growing on fructooligosaccharides, while a non-lactate 

utilizing, butyrate-forming Roseburia sp. could assimilate carbohydrate fragments formed 

when the Bifidobacterium hydrolyzed complex polymeric substrates. Similar processes in the 

SHIME reactor may explain the relative constant acetate concentrations during inulin 

treatment, whereas specific increases in bifidobacterial biomass were noted. 

 

Inulin administration also resulted in a decrease of ammonia and phenol levels in the 

different colon compartments of the SHIME reactor. Ammonia is produced in the colon by 

bacterial hydrolysis of urea as well as by bacterial deamination of amino acids, peptides, and 

proteins (Vince et al., 1976). Unlike carbohydrate fermentation, some of the protein 

degradation end products may be toxic to the host. High concentrations of ammonia in the 

colon have been linked to increased DNA synthesis and neoplastic proliferation (Ichikawa 

and Sakata, 1998). Different indoles, amines and phenols that result from amino acid 

fermentation have been linked to a range of pathologies including schizophrenia, migraine 

and hypertension (Tuohy et al., 2006). Lower proteolytic activities are therefore related to 

health-promoting effects. This can be extrapolated to the PhIP bioactivation inhibition 
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observed during this study. Previous studies have demonstrated that PhIP-M1 production 

takes place in the presence of a nitrogen-rich food source, containing only trace amounts of 

sugars or carbohydrates (Vanhaecke et al., 2008b). This implies that proteolytic conditions 

are essential for PhIP-M1 production. Interestingly, the chemopreventive effects from inulin 

against PhIP-M1 bioactivation were most apparent in the colon transversum, which is in fact 

the site where the highest significant decrease in ammonia production was recorded. 

Moreover, during the washout period, the recovery of microbial PhIP bioactivation was 

accompanied by a significant increase in ammonia production. The inhibition of inulin of 

these proteolytic end products and shift towards a more saccharolytic environment may thus 

well lie at the origin of its chemopreventive activity towards microbial PhIP bioactivation.  

 

With regard to the effects towards the microbial community, bifidobacteria have a 

competitive advantage over other intestinal microorganisms in a mixed culture environment 

due to their β-fructofuranosidase enzyme, allowing them to break down and utilize inulin-

type fructans (Kolida and Gibson, 2007). Besides their nutritional advantage, bifidobacteria 

have been suggested to inhibit excessive growth of pathogenic bacteria, modulate the immune 

system, repress the activities of rotaviruses, and restore microbial integrity of the gut 

microbiota following antibiotic therapy (Kolida and Gibson, 2007). Significant changes in 

microbial community composition following inulin administration to the SHIME nutrition, 

were only observed after two weeks, whereas metabolic changes were found within days. 

This can be explained by the faster adaptation of the microbial population towards 

metabolism (RNA-based) than towards their community structure (DNA-based) (Boon et al., 

2003). Structure analysis of the colon microbiota using PCR-DGGE confirmed these plate 

count data by showing that the overall microbial community kept relatively unchanged. Plate 

count analysis revealed that bifidogenic effects in the ascending colon vessel became 

significant after three weeks of supplementation, while in the transverse and descending colon 

compartments only non-significant increases were recorded. Several authors report a 

significant increase in bifidobacteria and a concomitant decrease in Enterococcus spp. upon 

inulin supplementation to humans (Kleessen et al., 1997) and rats (Licht et al., 2006).  As our 

recent work has shown that Enterococcus faecium is one of the principal colonic species 

responsible for the bioactivation of PhIP (Vanhaecke et al., 2008b), a decrease in Enterococci 

concentrations following inulin administration might as well play a part in the inhibition of 

PhIP-M1 formation. Plate counts during this SHIME run however only recorded non-
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significant decreases in Enterococci concentrations. Further research into the effects of inulin 

on the growth and activity of the PhIP-M1 producing Enterococcus species using more 

specific molecular techniques such as FISH and RT-PCR, is therefore required.  

 

The results from this study demonstrate that the lower dose of 3 g/day needs to be 

administered over a longer time frame to effectively induce and maintain beneficial effects. 

Single doses of inulin are therefore of no use. Higher levels of inulin supplementation may be 

considered in order to further reduce putrefactive ammonia and phenol production, increase 

SCFA production, sustain more pronounced bifidogenic effects and completely inhibit the 

microbial PhIP bioactivation potency. However, complaints of flatulence, abdominal pain and 

bloating have been reported in human feeding studies involving prebiotics (Macfarlane et al., 

2008). Evidence suggests that at a rational dose of up to 20 g/day, gas distension should not 

occur (Kolida and Gibson, 2007).  

 
In summary, our study revealed beneficial effects from native inulin towards microbial 

carcinogen bioactivation, microbial community composition and activity. The inhibition of 

genotoxic PhIP metabolite formation may be considered as beneficial, since this reduces the 

risks that PhIP-M1 may pose towards the colon epithelium in vivo. Additionally, a shift in 

fermentation pattern was rapidly seen with an increase in SCFA production towards 

propionate and butyrate and a decreased ammonia production. As the typical proteolytic 

conditions in the distal parts of the colon are normally more detrimental to the host in vivo, in 

particular in the light of microbial bioactivation processes, these positive modifications in the 

metabolism and microbial community indicate that inulin is a promising chemopreventive 

agent.  
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CHAPTER 7CHAPTER 7   
 

General discussion and perspectives 

 

1. General research outcomes 

1.1. Positioning of this research 

Diet has long been recognized as one of the major factors that can influence the 

development of cancer (Doll and Peto, 1981). Humans are exposed to complex mixtures of 

compounds, and while some of them meet nutritional demands, others have been suspected as 

risk factors for neoplasms. Epidemiological studies suggest that consumption of meat is 

positively correlated with human cancer and the cooking of meat is known to generate chemical 

carcinogens of high genotoxic potency, including the family of heterocyclic amines. Cooking 

meat in the kitchen readily produces HCAs and most people are exposed to appreciable 

amounts of these unequivocal carcinogens. The most abundant of these heterocyclic aromatic 

amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, has been shown to specifically 

induce tumors of the colon, breast and prostate in mice and rats, which, coincidentally are the 

three most common sites of diet-associated cancer in Western society. In realizing its mutagenic 

potential, PhIP requires metabolic activation by endogenous pathways. 

 

Traditionally, the process of food digestion and nutrient and energy provision has been 

considered to end at the distal ileum and scant attention has been paid to the transformation of 

dietary constituents that enter the colon. However, from a clinical perspective, the colon was 

recognized as central to host health with even the earliest of observers, Hippocrates 400 BC 

noting that ‘death sits in the bowel’. Colon cancer is the second leading cause of cancer death 

in Western societies and gastrointestinal infections, inflammatory diseases, such as ulcerative 

colitis (UC) and Crohn’s disease, or functional disorders of the gut probably account for the 

majority of the economic cost of community health care. The human bowel is populated by a 

large number of bacteria which play a fundamental role in the general health status of a 

human subject, both positively, e.g. by providing energy for the host, educating the host’s 

immune system, protecting against colon cancer (Tuohy et al., 2003) and negatively, e.g. by 

the production of hazardous metabolites, the colonization of pathogens or facilitating the 
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onset of obesity (Bäckhed et al., 2004; Cani et al., 2006). A wide range of functional foods 

now exist which target colonic health and this has led to the growth of this industry into a 

multi-billion Euro market in recent years, e.g. in 2005 the European probiotic yoghurt market 

valued 1.25 billion Euro. Conversely, scientific findings confirm the involvement of the colon 

microbiota in colorectal and other diet related cancers by the production of carcinogenic 

metabolites from dietary constituents (Illet et al., 1990; Hirayama et al., 2000; Gill and 

Rowland, 2002; Humblot et al., 2004; 2005; 2007; Van de Wiele et al., 2005). Several 

enzymes and metabolites have been identified that are directly or indirectly related to 

colorectal carcinogenesis (Illet et al., 1990; Gill and Rowland, 2002). Yet, there are only 

limited data on the potency of the colon microbiota to directly bioactivate dietary 

components. If the colon microbiota are capable to bioactivate chemicals that would normally 

be excreted through the feces and if these bioactivated metabolites significantly contribute to 

the risk of a certain chemical, this could have profound consequences for current human 

health risk assessment. Chemicals that are not absorbed in the small intestine may become 

available for biotransformation by the resident microbiota and may as such form an additional 

hazard for the colonocytes and through absorption and distribution even affect other tissues.  
 

1.2. Bioactivation of PhIP 

The goal of this research was to elucidate the possible impact of the human intestinal 

microbiota on the biological activity of the heterocyclic amine PhIP. Numerous studies have 

reported on the metabolism of heterocyclic amines and in particular IQ, MeIQ and PhIP by 

mammalian enzymes, whereas only a few, partly conflicting result from studies with intestinal 

microorganisms are available. This is clearly shown by a short search in the available literature 

(Figure 7.1). The majority of the limited amount of existing microbial studies has focused on 

the native metabolism of the heterocyclic amine IQ. For PhIP, to the best of our knowledge, no 

other research group ever investigated the intestinal microbial metabolism up to date. It has, 

however, been recently shown that the amount of PhIP metabolites excreted in the urine of 

humans following ingestion of PhIP in a meat matrix is significantly lower than that of 

patients administered PhIP in a capsule. This indicates that PhIP provided in capsule form is 

more bioavailable than PhIP ingested from meat. This non-bioavailable fraction reaches the 

colon and becomes available for biotransformation by the colonic bacteria. 
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Therefore, in this work an integrated approach of in vitro and in vivo research was 

followed to explore the PhIP bioactivation potency of the human intestinal microbiota. Starting 

from simple in vitro batch incubations with human fecal samples, the most important research 

findings were validated and confirmed in vivo in a human intervention trial. Mechanistic aspects 

of the microbial transformation process were further explored using in depth molecular and 

chemical analyses. Mammalian cell-culture based assays were finally used to determine the 

biological relevance of the microbial PhIP transformation process. 

 

 
 

Figure 7.1 Number of hits in Web of Science when searching for PhIP, IQ and MeIQ in 

relation with liver and bacterial metabolism in the intestine 

(http://apps.isiknowledge.com). 
 

1.3. Main research findings 

The major accomplishments of this work can be summarized as follows and are 

schematized in Figure 7.2. 

 

 In vitro metabolism of PhIP into PhIP-M1. For the first time, the intestinal 

microbial metabolism of the heterocyclic aromatic amine PhIP was investigated. Upon 
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in vitro incubation of human fecal samples, it was shown that intestinal 

microorganisms actively transform the food carcinogen PhIP, resulting in the 

formation of one major metabolite. By a combination of mass spectrometric and NMR 

spectroscopic evidence, the complete chemical configuration of this microbial PhIP 

derivate was identified as 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido-

[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (Chapter 2).  

 
 In vivo detection of PhIP-M1. An analytical method was developed that reliably and 

simultaneously quantifies PhIP and PhIP-M1 in urine and feces samples from healthy 

individuals administered a known dose of PhIP. Subsequently, this method was 

applied on pooled human urine and feces samples from 6 human subjects that were 

fed 150 g of well-done chicken and for the first time the excretion of a microbial PhIP 

metabolite in human urine and feces was observed (Chapter 3). 

 
 Interindividual variation in PhIP transformation. As the microbial transformation 

of PhIP was not identical in every fecal sample tested, the production of PhIP-M1 was 

shown to be dependent on interindividual differences. A first explorative experiment 

with 6 human fecal samples demonstrated this relation (Chapter 2). Subsequent fecal 

incubations with 18 human microbiota confirmed that individuals could be separated 

in low, moderate and high PhIP-M1 producers (Chapter 4). Finally, differences in 

intestinal PhIP-M1 production were found to determine differences in PhIP-M1 

excretion in vivo in humans (Chapter 3). 

 
 Isolation, identification and characterization of PhIP-M1 producing bacteria. In 

the search to find bacterial species responsible for PhIP-M1 production, two 

individual strains were isolated from human feces and identified as Enterococcus 

faecium PhIP-M1-a and PhIP-M1-b. Some strains from culture collections belonging 

to the species Enterococcus durans, Enterococcus avium, Enterococcus faecium and 

Lactobacillus reuteri were also able to perform this transformation. Glycerol was 

identified as a fecal matrix constituent required for PhIP transformation. The 

anaerobic fermentation of glycerol via 3-HPA was determined as the critical bacterial 

transformation process responsible for the formation of PhIP-M1 (Chapter 4). 

 
 Biological activity of PhIP-M1. The mutagenic activity of PhIP-M1, as analyzed 

using the Salmonella strains TA98, TA100 and TA102, yielded no significant 
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response (Chapter 3). PhIP-M1 however induced significant cytotoxic, apoptotic and 

DNA damaging effects towards the human colon cancer cell line Caco-2 (Chapter 5). 

 

 Chemopreventive properties of inulin against PhIP-M1 formation. A potential 

added value of chicory inulin was explored. Inulin exerted strong inhibitory effects 

towards microbial PhIP bioactivation as measured using HPLC analysis (Chapter 6).  

 

Microbial bioactivation of PhIP 
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Figure 7.2 Schematic overview of the main research accomplishments of this work. 
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2. Contribution to scientific knowledge 

2.1. PhIP-M1: a newly identified microbial PhIP metabolite  

2.1.1 In vitro formation by fecal microbiota: purification and identification 

As described in Chapter 2, the original goal of this dissertation was to investigate any 

possible metabolism of the most abundant heterocyclic aromatic amine, PhIP, by the human 

intestinal microbiota. In a first experiment to exploit this biotransformation potential, we 

incubated the microbial cultures obtained from six human stool samples with an 

environmentally relevant concentration of PhIP. Interestingly, all six human feces degraded 

PhIP and concurrently produced one metabolite, PhIP-M1. This microbial conversion proved 

to be concentration independent. Therefore, a strategy of anaerobic batch fermentation of a 

highly transforming fecal culture with a PhIP concentration reaching saturation solubility was 

applied to obtain large quantities of the newly discovered PhIP metabolite. Subsequently, a 

straightforward preparative RP-HPLC method was developed for the large-scale purification 

of PhIP-M1. The preparative RP-HPLC method enabled purification of PhIP-M1 in quantities 

of several tens of mg and allowed in depth mass spectrometric, NMR spectroscopic and IC 

analysis. Careful interpretation of these data led to the assignment of PhIP-M1 as 7-hydroxy-

5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3’,2’:4,5]imidazo[1,2-a]pyrimidin-5-ium 

chloride.  

 

This newly optimized preparative RP-HPLC method will not only be useful in the 

development and validation of new analytical methods (Chapter 3) but will as well enable 

investigation of the biological properties of PhIP-M1 in in vitro bacterial bioassays (Chapter 

3) and human cell line tests (Chapter 5) and in vivo experiments with laboratory animals, 

which could contribute to a better overall understanding of the potential effects of this 

metabolite in relation to human health. Moreover, our results demonstrate the importance of 

powerful high-resolution analytical techniques such as HRMS and 1H and 13C NMR 

spectroscopy in microbial metabolomics.  

 

2.1.2 In vivo detection in human urine and feces: completing the PhIP mass balance 

Although several analytical methods have been developed for the detection and 

quantification of PhIP and/or its liver metabolites in urine (Strickland et al., 2001; Stilwell et 

al., 2002; Kulp et al., 2004; Malfatti et al., 2006), research on the bioavailability and 
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biological activity of the heterocyclic amine PhIP in a meat matrix has so far been hampered 

by the absence of good analytical methods for the detection or quantification of PhIP in feces. 

In addition, the potential contribution of the intestinal bacteria to the absorption, metabolism 

and excretion of PhIP has so far been neglected in human intervention trials.  

 

In this work we developed, optimized and validated a rapid and accurate solid phase 

extraction LC-ESI-MS/MS method for the simultaneous quantification of PhIP and PhIP-M1 

in human urine and feces (Chapter 3). Because our method was devised to investigate the 

microbial involvement in PhIP metabolism and in order to enhance the recovery of PhIP, 

urine and feces samples were hydrolyzed with acid prior to analysis. This treatment causes the 

release of PhIP from putative glucuronide or sulphate conjugates (Strickland et al., 2001). 

RP-HPLC is the most utilized technique for separating PhIP and its deconjugated metabolites 

in biological matrices, such as urine, milk or feces (Chen et al., 2007; Scott et al., 2007), 

although some bottlenecks emerge herewith, including the complexity of biological extracts, 

the overlapping retention times of analytes and deuterated standards and the ng/L 

concentrations at which these compounds occur in biological matrices - making conventional 

detection by UV absorption, fluorescence or single-ion monitoring MS impossible. The 

unsuitability of these detection methods was efficiently circumvented by using tandem mass 

spectrometry, which exhibited sharp peaks and good signal-to-noise ratios, for PhIP and its 

microbial metabolite in both urine and feces samples. Quantification of the newly identified 

PhIP-M1 metabolite was made possible as external and internal standard curves were 

constructed with respectively, PhIP-M1 and [2H3]PhIP-M1, purified using preparative HPLC 

as described in Chapter 2. This method can contribute to further research on the metabolism 

and bioavailability of PhIP.  

 

In Chapter 3, we applied this method on urine and feces samples from six healthy 

adults, which received a known dose of naturally produced PhIP. Of the ingested dose, 

volunteers excreted 1.2-15% as PhIP-M1 in urine and 0.9-11% as PhIP-M1 in feces. This 

PhIP-M1 was not formed de novo from PhIP in urine and feces samples during hydrolysis. A 

number of studies describe the incubation of PhIP with mammalian enzymes and none of 

them reported the detection of a metabolite resembling PhIP-M1 (Zhao et al., 1994; Crofts et 

al., 1998; Turesky et al., 2002), while incubation of PhIP with fecal bacteria does give rise to 

the formation of this metabolite (Chapter 2). Moreover, for PhIP-M1, an increase in urinary 
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excretion was observed for successive time increments, whereas for PhIP the majority was 

excreted in the first 24 h. Therefore, our results confirm that the intestinal bacteria 

significantly contribute to the overall metabolism and disposition of PhIP in vivo.  

 

In addition, PhIP and PhIP-M1 quantification revealed that the percentages of the total 

PhIP dose excreted in this study as PhIP (26-42%) and PhIP-M1 (0.9-11%) in feces were 

surprisingly high and could explain the relatively low PhIP dose percentages measured in 

urine in previous metabolism studies of human subjects given PhIP in a meat matrix (Kulp et 

al., 2000; 2004; Strickland et al., 2001). The total percentage of PhIP and PhIP-M1 accounted 

for in the 72 h urine and feces, varied from 49% to 71%. The 2-OH-PhIP derivate, which is 

formed during acidic hydrolysis from the major mammalian N-oxidation metabolite N-OH-

PhIP-N2-glucuronide, was however not quantified during our study. It has been reported that 

25 ± 8.4% (66 volunteers) of the ingested PhIP dose after ingestion of a meat-based meal is 

excreted as 2-OH-PhIP (Stillwell et al., 2002). This might explain the additional deficit in 

PhIP dose percentage encountered in this study. Therefore, future studies should be devised to 

assess the urinary and fecal excretion of PhIP, 2-OH-PhIP and PhIP-M1 and to relate these 

percentages to microbial community composition, phase I and phase II enzyme expression 

and specific systemic biological effects. 

 

2.2. PhIP-M1 formation: a mechanistic basis 

2.2.1. Isolation and identification of PhIP-M1 producing bacteria 

After the observation that PhIP could be metabolically converted in vitro and in vivo, 

the next step was to identify the bacterial species responsible for this process. We attempted 

to isolate a PhIP-M1 producing bacterium from the feces of two human volunteers with a high 

PhIP transforming potential. We applied a strategy of anaerobic culturing in the presence of 

fecal matrix, followed by plating and re-incubating picked up colonies. From the 65 colonies 

we picked, only two resulted in a culture that converted PhIP into PhIP-M1. However, as was 

observed by microscopic analysis, the obtained cultures consisted of morphologically 

identical bacterial species. Molecular techniques (16S rRNA PCR, DGGE, cloning, 

sequencing) confirmed the genus of the strains as Enterococcus. Definite identification of the 

isolates was achieved by FAPLPTM and partial pheS sequence analysis, which are now 

deposited as two new strains: Enterococcus faecium PhIP-M1-a and PhIP-M1-b. In addition, 
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several culture collection strains belonging to the species Enterococcus durans, Enterococcus 

avium, Enterococcus faecium and Lactobacillus reuteri were also capable of producing PhIP-

M1 (Chapter 4).  

 

2.2.2. Microbial, chemical and nutritional aspects in PhIP-M1 formation  

Remarkably, the microbial transformation of PhIP showed no resemblance to that of the 

heterocyclic amines IQ and MeIQ, which have been reported to form stable hydroxy derivates 

(Vantassell, 1990; Humblot et al., 2005). One possible explanation for this discrepancy, as 

mentioned in Chapter 2, might be the protective effect of the phenyl substituent of PhIP, 

impairing hydroxylation on the imidazo moiety. Moreover, the microbial conversion reaction, 

which has been discovered during this research, is unique in its kind, as nobody else ever 

reported the involvement of intestinal bacteria or even anaerobic bacteria in general, in this 

sort of three-carbon ring expansion.  

 

Therefore, as a next step in our research, we attempted to clarify the metabolic 

processes behind the microbial PhIP to PhIP-M1 conversion. In Chapter 4, several in vitro 

PhIP incubation experiments with inactivated fecal cultures, surfactants and protease 

inhibitors were performed. These provided evidence for the involvement of actively 

fermenting bacteria in PhIP-M1 formation by the production of an extracellular substance 

through an enzymatic process. Subsequently, it was found that glycerol is required for the 

conversion of PhIP into PhIP-M1. Addition of glycerol to the growth medium of mixed fecal 

microbiota, Enterococcus faecium PhIP-M1-a or Lactobacillus reuteri ATCC 5360 clearly 

initiated PhIP-M1 production. This PhIP-M1 formation was accompanied by the detection of 

3-HPA in the mixed and pure culture fermentation broths. Therefore, it could be concluded 

that the anaerobic fermentation of glycerol to 3-HPA is the critical bacterial transformation 

responsible for the formation of PhIP-M1. The addition of 3-HPA to the PhIP molecule, 

resulting in the three-carbon ring expansion, is however chemical, as abiotic synthesis of 

PhIP-M1 by addition of 3-HPA to the sterile bacterial growth medium in the presence of PhIP 

was successfully performed.  

 

Under anaerobic conditions, several lactobacilli, as well as other bacterial species 

(Klebsiella, Clostridium, Enterobacter and Citrobacter genera) have been shown to use 

glycerol as an external electron acceptor (Schutz and Radler, 1984; Talarico et al., 1988; 



Chapter 7 

 158 

Sauvageot et al., 2000), resulting in the coenzyme B12-dependent dehydratase mediated 

conversion to 3-HPA. 3-HPA is normally an intracellular intermediate that does not 

accumulate but is reduced by an NAD+-dependent oxidoreductase to 1,3-propanediol (PPD) 

(Biebl et al., 1999). We are however the first to relate bacterial species of the genus 

Enterococcus to this anaerobic pathway of glycerol dissimilation. Surprisingly, Enterococcus 

faecium PhIP-M1-a turned out to be only a weak 3-HPA and PhIP-M1 producer under fecal 

matrix-poor conditions, implying that other fecal matrix constituents might be required by this 

strain to perform the glycerol fermentation. It could however not be determined which fecal 

excretion products were requisite for 3-HPA formation. Next to the fecal matrix, PhIP-M1 

production also requires the presence of a nitrogen-rich food source containing trace amounts 

of sugars and carbohydrates. This was shown for mixed fecal microbiota as well as for the 

Enterococcus faecium PhIP-M1-a transforming strain. Lactic acid bacteria (LAB) are 

nutritionally fastidious microorganisms, which are, nevertheless, capable of hydrolyzing 

peptides down to free amino acids. Amino acid catabolism produces, in turn, a number of 

compounds, including ammonia, amines, aldehydes, phenols, indole and alcohols. 

Enterococcus faecium has been shown to display high dehydrogenase activity and high 

oxidase activity towards selected amino acids compared to other selected LAB (Lactobacillus 

paracasei, Leuconostoc mesenteroides, Lactococcus lactis) (Tavaria and Malcata, 2003). 

These proteolytic activities and the respective catabolism products of Enterococcus faecium 

may be indirectly related to the glycerol fermentation process, although further research is 

required to clarify the possible interactions and elucidate the glycerol fermentation pathway 

followed by Enterococcus faecium and phylogenetically related enterococci. In Chapter 4, 

we have observed that easily degradable sugars inhibit PhIP-M1 production. It has been 

reported that the regulation of the PPD pathway is dependent on the availability of 

fermentable carbohydrates, in particular glucose (Biebl et al., 1999). In the absence of 

glucose, PPD formation is the rate-limiting step and 3-HPA may accumulate. The inhibition 

of PhIP-M1 production in the presence of easy degradable sugars may thus well be linked to 

the absence of 3-HPA under these conditions. 

 

Indications from recent literature exist that enterococci may play a role in the 

metabolism of glycerol in a mixed microbial culture in vitro. Cleusix et al. (2008) 
investigated the effects of Lactobacillus reuteri ATCC 55730 on adult intestinal microbiota 

and its capacity to secrete 3-HPA in the presence of glycerol using an in vitro colonic model. 
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The addition of 100 g/L glycerol strongly modified the SCFA ratio (increased butyrate 

production). In addition, a marked increase in PPD production was observed. Among the 

propanediol-producers clostridia are the most commonly reported intestinal species and 

contrary to Lactobacillus reuteri and other propanediol-producers the only ones known to 

produce butyrate as a byproduct. Some enterococci, however, have been recently shown to 

posses the bacterial gene encoding butyrate kinase, present in the butyrogenic bacterium 

Clostridium (Raz et al., 2007). Moreover, Cleusix et al. (2008) observed an increase in 

lactobacilli/enterococci populations upon glycerol supplementation, whereas no increase in 

Lactobacilllus reuteri or clostridial populations was detected. In light of these findings, 

further studies are warranted to assess the involvement of enterococci in glycerol 

fermentation. Therefore, more specific quantitative molecular detection techniques such as 

RT-PCR or FISH might be considered to evaluate the shifts in colonic microbial composition 

upon glycerol supplementation. 

 

2.3. Interindividual variability in PhIP-M1 production and excretion 

An important aspect of the health impact of the intestinal microbiota that has recently 

emerged is the interindividual variation in activity and composition of the gut bacteria. Each 

individual harbors a unique microbial community that comprises a total of ca. 1014 bacterial 

cells belonging to 500-1000 different species. As a result each individual microbial 

community may exert distinct health effects towards the human host and may posses a 

different bioactivation/detoxification potential towards dietary components, which on their 

turn may also influence human health. Examples of bacterial transformations, which are 

subjected to a high interindividual variability and may influence the hosts’ health both in a 

positive or negative fashion, are presented in Table 7.1. 

 

Similar observations were made for the PhIP to PhIP-M1 conversion by human 

intestinal bacteria. In a first preliminary in vitro experiment with six fecal samples, significant 

interindividual differences were observed in the capacity of the intestinal microbiota to 

produce PhIP-M1, ranging from 47 to 95% (Chapter 2).  Expansion of the number of fecal 

samples to eightteen, lead to a broader transformation efficiency range (1.8 to 96%) (Chapter 

4). Remarkably, every in vitro incubated fecal microbial community screened so far, has been 

proven capable of producing PhIP-M1 to some extent.  
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Table 7.1. Examples of intestinal microbial metabolites from dietary components of 

which the formation is subjected to a large interindividual variation. 

Dietary component Bacterial metabolite Effect on human health Reference 

IQ 7-OH-IQ 
Mutagenic in Ames assay, 
not carcinogenic in rodents Humblot et al., 2005 

Daidzein 
Equol 

 
O-DMA 

Estrogenic activity, 
reduction of certain diseases 

including risk breast and 
prostate cancers  

Atkinson et al., 2005 

Lignans 
Enterodiol 

 
Enterolacton 

Estrogenic activity, 
prevention breast and colon 

cancer, diabetes and 
atherosclerosis  

Clavel et al., 2005 

Cholesterol Coprostanol Associated with colorectal 
carcinogenesis 

Veiga et al., 2005 

Flavonoids (general) Inactive compounds 
Compounds with no 

estrogenic activity and thus 
no preventive potential 

Simons et al., 2005 

Primary bile acids Secondary bile acids Risk of colon cancer and 
cholesterol gallstones 

Kitahara et al., 2004 

Isoxanthohumol 8-Prenylnaringenin 
Prevention bone loss, 

inhibition metastasis and 
angiogenesis, estrogenic and 

antiandrogenic activity 

Possemiers et al., 2005 

 

Interindividual variability in PhIP-M1 production was further investigated in Chapter 

3, in which a human intervention trial with 6 individuals was set up to investigate whether 

interindividual differences in PhIP-M1 production in vitro would also lead to differences in 

urinary and fecal PhIP-M1 excretion in vivo. Indeed, significant differences in urinary and 

fecal excretion were observed for PhIP-M1 (1.2–15% in urine and 0.9–11% in feces), while 

for PhIP, which consisted of free PhIP and acid-labile PhIP conjugates, these differences were 

far less pronounced (12–21% in urine and 26-41% in feces). This indicates that 

interindividual differences in microbial composition and metabolism may at least be equally 

important than differential expression and genetic polymorphisms in phase I and II 

endogenous enzymes, which have been considered so far as the obvious candidates 

responsible for individual variability in urinary excretion of PhIP metabolites following 
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ingestion of similar quantities of parent compound (Stillwell et al., 2002). The microbial 

composition and metabolic activity as well as the expression of mammalian CYP1A2, SULT, 

UDPGT and NAT can all to some extent be attributed to environmental factors such as drugs, 

diet, alcohol consumption and smoking (Zevin and Benowitz, 1999; Schwab et al., 2000). As 

we have shown in Chapter 4, the nutritional composition and concentration of specific 

cofactors in the fermentation broth strongly influenced final PhIP-M1 production by fecal 

microbiota in vitro. This may be extrapolated to human nutrition in vivo.  

 

In addition, our results did not only show that intestinal activation of PhIP determines 

PhIP-M1 excretion in vivo. For some individuals the urinary vs. fecal excretion of PhIP-M1 

was substantially elevated compared to that of other individuals. Therefore, it can be 

concluded that differences in intestinal production and absorption of PhIP-M1 determine the 

systemic exposure and possible health outcome related to consumption of PhIP-containing 

meat products. Future studies are however needed to assess the stability of the microbial PhIP 

bioactivation phenotype over longer periods and to explore the final importance of this 

variability towards specific activity related endpoints such as DNA adducts and chromosomal 

aberrations. 

 

2.4. Bioactivation of PhIP: microbial contribution  

The current focus of risk assessment for the oral exposure to food contaminants lies on 

human bioactivation processes by cytochrome P450 complexes in enterocytes and 

hepatocytes. There are however many indications that the intestinal microbiota can inactivate 

or bioactivate a wide variety of chemical agents from diet or biliary excretion (McBain and 

Macfarlane, 1998; Macfarlane and Macfarlane, 2007). Microbial bioactivation is however not 

covered in current risk assessment practice, but it has already been extensively discussed 

when reviewing the relationships between diet and cancer and the role of intestinal 

microorganisms (McBain and Macfarlane, 1998; Gill and Rowland, 2002; Tuohy et al., 2006; 

O’Keefe, 2008).  

 

It has been shown that the intestinal microbiota are essential to the induction of DNA 

damage by PhIP in HFA rats (Hollnagel et al., 2002).  Moreover, since ligation of the biliary 

duct in rats does not alter the genotoxic potential of PhIP (Kaderlik et al., 1994), the 
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deconjugation of reactive glucuronides by bacterial β-glucuronidase was suggested not to 

influence the metabolic fate and bioactivity of PhIP (Humblot et al., 2007). Therefore, it is 

very much conceivable that the microbial formation of PhIP-M1 contributes to the final 

genotoxic and carcinogenic activity of PhIP.  

 

As was reported in Chapter 3, PhIP-M1 did not act as a direct mutagen in the 

Salmonella/Ames assay. The experiments conducted in Chapter 5 however showed that 

PhIP-M1 induces DNA damage, cell cycle arrest, apoptosis and eventually cell death and 

growth inhibition towards the human intestinal Caco-2 cell line. DNA damage in Caco-2 cells 

was detected using the comet assay or single-cell gel electrophoresis (SCGE). This assay is 

recognized as a sensitive tool widely used for the evaluation of primary DNA damages at the 

individual cell level (Tice et al., 2000), while the bacterial Ames assay only detects mutagenic 

effects if the DNA damage induced remained after cell division. Hartmann et al. (2001) have 

indeed shown that the comet assay is capable of detecting genotoxic compounds that were 

tested negative in the Ames assay. The conversion of PhIP into PhIP-M1 is therefore 

considered as a microbial bioactivation. 

 

As the genomic and cellular events of CYP1A2-activated PhIP in different in vitro cell 

systems (Pfau et al., 1999; Zhu et al., 2000; Edenharder et al., 2002; Gooderham et al., 2002; 

2007) are not significantly higher than those observed for PhIP-M1 in our test system, the 

physiological relevance of this microbial PhIP derivate in PhIP carcinogenicity may not be 

neglected. Extrapolation of these in vitro data to the in vivo situation must however be made 

with caution. Therefore, further assessment of the in vitro genotoxicity and in vivo 

carcinogenicity of PhIP-M1 may be desirable. 

 

The microbial bioactivation of ingested PhIP in Chapter 5 and the indirect 

bioactivation through microbial deconjugation enzymes of ingested IQ (Humblot et al., 

2007), indicate the important role of the colon microbiota in the generation of genotoxic 

compounds from HCAs. Since such bacterial transformation processes and enzymatic 

activities are, as mentioned previously, often diet related, it would be interesting to modulate 

the bioactivation potency through dietary factors. Several studies have shown that the diet 

strongly modulates the metabolic activity from intestinal microbiota (Louis et al., 2007) and 

changes in the microbial community composition have been observed to influence the 
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metabolism of DNA-reactive carcinogens (Humblot et al., 2005). It has been demonstrated 

that oligosaccharides such as FOS, GOS or inulin inhibit the formation of heterocyclic amines 

in a meat matrix (Shin et al., 2003). Moreover, it has been observed that oligofructose and 

inulin decrease IQ-induced genotoxicity in HFA rats through inhibition of the β-

glucuronidase activity (Humblot et al., 2004; 2007), whereas the impact of oligosaccharides 

and inulin on direct microbial bioactivation processes has not been reported. Therefore, in 

Chapter 6, the use of native chicory inulin was evaluated as an inhibitory feed constituent 

against microbial PhIP bioactivation. HPLC analysis revealed that inulin administration 

significantly decreased the formation of the genotoxic PhIP-M1 derivate in PhIP incubated 

colon samples, specifically in the transverse and descending colon and to a lesser extent in the 

ascending colon. The most important effect of inulin administration towards the microbial 

community was the increase in bifidobacteria, as indicated by plate counts and PCR-DGGE. 

Inulin-type fructans are composed of β-D-fructofuranoses attached by β-2→1 linkages that 

are preferentially degraded by bifidobacteria, thus providing a competitive advantage over 

other intestinal microorganisms in the colon (Kolida and Gibson, 2007). This bifidogenic 

effect may suppress other microbial groups such as enterococci (Kleessen et al., 1997; Licht 

et al., 2006), which are involved in microbial PhIP bioactivation. With regard to the 

metabolic activity, inulin beneficially influenced the fermentation pattern of the colon 

microbiota towards a significantly higher SCFA production, primarily propionate and 

butyrate and a decrease in ammonia and phenol production, which can be considered as 

general indicators of lower colon cancer risk (Macfarlane et al., 2008). As PhIP-M1 

production has been shown to occur under proteolytic conditions, this shift towards a more 

saccharolytic environment may explain for the chemopreventive effects detected. These 

observations indicate that the prebiotic effect of inulin addition acts on several aspects, which 

may all lay at the origin of a decrease in PhIP-M1 formation in the colon. Future research 

should investigate the effects of inulin on the growth and activity of the PhIP-M1 producing 

Enterococcus species using more specific molecular techniques such as RT-PCR and flow 

cytometry. Additionally, other dietary inhibitors towards microbial PhIP bioactivation in 

general need to be explored. 
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3. Future perspectives 

Against the background of this dissertation - microbial bioactivation of food 

contaminants - several future research topics can be identified that are directly or indirectly 

related to microbial metabolism and human health. There is expanding evidence that many 

colonic diseases, and in particular colon cancer risk, are determined by interactions between 

the diet and microbiota. Further research into the composition, characterization and 

metabolite activity of our microbiota may provide the key to the influence of nutrition and 

environment on colonic health and disease. For most practical purposes however, the large 

bowel is inaccessible for routine investigation, and a further exploration of high-throughput 

screening techniques that are still reliable with regards to bioavailability, metabolism and 

toxicity processes is needed. 

 

3.1. Intestinal bacteria: metabolism and colonic health 

3.1.1. Diet and nutrition  

One of the fundamental properties of mucosal epithelia is their ability to directly utilize 

‘topical’ nutrients, derived from the diet or digestion of food, without reliance on the blood 

flow. The two main fermentative substrates of dietary origin are non-digestible carbohydrates 

(10-60 g/day) and protein (∼ 13 g/day) that escape digestion in the small intestine (Tuohy et 

al., 2006). Although colonocytes do not secrete enzymes that are capable of digesting these 

residues, the colonic microbiota do, and in an excellent example of symbiosis, the bacteria 

metabolize these residues. Unfortunately, bacteria can also synthesize metabolic products that 

are injurious to the mucosa (Figure 7.3).  

 

Carbohydrates (fiber and resistant starch) in the colon are fermented to SCFAs, which 

maintain mucosal respiration and growth, and one of them, butyrate, regulates proliferation 

and differentiation and reduces tumorigenesis (Roy et al., 2006). Generally, a diet rich in 

fibers and resistant starch is believed to reduce the risk of colon cancer (O’Keefe, 2008). 

Unfortunately, carbohydrate fermentation can also produce toxic metabolites. Fermentation of 

starch produces hydrogen gas that can impair NAD regeneration and inhibit cellular 

metabolism (Gibson et al., 1993). Interestingly, high fermenters, such as ruminants, have 

adapted by replacing hydrogen-producing bacteria with epithelium-sparing methane 

producers.  
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Figure 7.3 The effects of diet on colonic health and disease mediated by the colonic 

microbiota (O’Keefe, 2008). 

 

Proteins and amino acids are also available for bacterial fermentation in the colon. 

Several of the products resulting from amino acid fermentation have some relevance to 

human health. Oxidative or reductive deamination leads to the formation of ammonia, which 

has been shown to act as a tumor promoter (Ichikawa and Sakata, 1998). Bacterial 

degradation of sulfur-containing amino acids promotes the growth of sulfur-reducing bacteria 

and outcompetes methanogenic bacteria for hydrogen to form hydrogen sulphide. Hydrogen 

sulphide impairs cytochrome oxidase, suppresses butyrate utilization, inhibits synthesis of 

mucus and DNA methylation (Christl et al., 1992), has been implicated in ulcerative colitis 

(UC) (Roediger et al., 1993) and has been shown to act as a genotoxin through the generation 

of free radicals (Attene-Ramos et al, 2007). The anaerobic fermentation of aromatic amino 

acids gives rise to phenols and indoles. Phenols such as p-cresol and its secondary metabolites 

have been proposed to act as pro-carcinogens in colon cancer (Blaut and Clavel, 2007). 

Decarboxylation of amino acids in the colon results in the formation of amines. Under acidic 

conditions or catalyzed by bacteria, the latter may react with nitrite to form carcinogenic N-
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nitroso compounds such as nitrosamines. Many oral and intestinal bacteria are capable of 

reducing nitrate to nitrite. It is however not clear whether bacterial nitrite is a key agent in 

nitrosation. Moreover, it has been shown that different representative gut bacteria may further 

reduce nitrite to nitric oxide (Sobko et al., 2005). Nitric oxide is a free radical with moderate 

reactivity compared to other species, which gives rise to a multitude of physiological and 

pathological events in the gastrointestinal tract. A complete understanding of the mechanisms 

regulating the formation of N-nitroso compounds and nitric oxide formation from nitrite by 

intestinal microbiota would require the isolation and characterization of the responsible 

bacteria and more extensive in vivo studies. Future studies are also needed to reveal the 

biological significance of these metabolic processes, in particular in the light of their potential 

involvement in intestinal inflammation and IBD (Kolios et al., 2004). 

 

Fat intake and in particular animal fat has long been recognized as a risk factor in colon 

cancer (Doll and Peto, 1981). On the other hand, experimental data have clearly demonstrated 

that the influence of dietary fats on cancer depends on the quantity and the type of lipids. 

Whereas a high intake of n-6 PUFA and saturated fat has tumor-enhancing effects, n-3 PUFA, 

conjugated linoleic acid and gamma-linolenic acid have inhibitory effects. Until present, 

identification of the underlying mechanisms of this association in relation to intestinal 

microbial metabolism was mainly indirect. Fat consumption stimulates the synthesis and 

enterohepatic circulation of the primary bile acid, cholic acid, which is mostly reabsorbed, 

however a fraction may reach the colon (Reddy, 1981). If the colonic microbiota contain 7α-

dehydroxylating bacteria, cholic acid is converted to deoxycholic acid, a well-recognized co-

carcinogen (Nagengast et al., 1995). Moreover, the intestinal microbiota have recently been 

implicated in the regulation of fat storage and the onset of obesity. Glucagon-Like Peptide-1 

(GLP-1) and Glucose-dependent Insulinotropic Polypeptide (GIP) are produced in the 

intestine in response to glucose intake and would play an important role in the onset of 

diabetes and insulin resistance. Microbial metabolites in the intestine would influence GLP-1 

and GIP production, thereby influencing satiety (Cani et al., 2006). Similarly, the expression 

of the Fasting Induced Adipose Factor (FIAF), which inhibits blood lipase activity and 

inhibits fat storage, would be suppressed by intestinal microbiota, leading to increased fat 

storage (Bäckhed et al., 2004).  
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The direct interactions of dietary lipids and its lipolysis products in relation to colonic 

microbiota and human health are however largely unexplored. It has been shown that in 

healthy subjects, about 2-4 g of the daily dietary lipid intake reaches the colon (Hill, 1995). In 

addition, a significant fraction free glycerol, liberated from dietary fat in the small intestine by 

pancreatic lipases, may reach the colon as such, since its intestinal absorption is saturable and 

involves carrier-mediated transport (Yuasa et al., 2003; Kato et al., 2005; Fujimoto et al., 

2006). A few studies provide evidence for the hydrogenation of essential PUFAs by colonic 

microbiota (Howard and Henderson, 1999; Devillard et al., 2007) and recent research 

explored the fermentation of glycerol in an in vitro colonic model (Cleusix et al., 2008). In 

the light of the potential health effects of these and possibly other microbial processes, the 

bioavailability, metabolism and biological activity of dietary lipids and their degradation 

products with respect to the microbial community should be further investigated. This should 

preferably be done by a combination of in vitro fermentation technology and in vivo 

metabolism studies. In both cases there is a need for good biomarkers, which efficiently 

reflect the risks associated with certain metabolic processes.  

 

3.1.2. Carcinogenic food contaminants  

Food consumption represents an important pathway for human exposure to chemicals 

from a variety of sources. There are 4 primary types of potentially carcinogenic compounds 

(Abnet, 2007). The first are natural products that may be present in food and are unavoidable. 

For example, the process of creating salted fish produces carcinogens (N-

nitrosodimethylamine and other N-nitroso compounds) that cannot be avoided easily. Second 

are natural products that might be avoided such as the contamination of grain with the 

carcinogenic fungal metabolite aflatoxin, which can be reduced or eliminated using best 

practices for grain storage. Third, anthropogenic chemicals may be present in food. For 

instance, 2,3,7,8-tetrachlorodibenzo-p-dioxin has been inadvertently produced during the 

manufacture of chlorinated hydrocarbons, but it contaminates the environment, resists 

degradation, and accumulates in certain foodstuffs. A fourth category of concern is 

anthropogenic chemicals intentionally added to foods, such as saccharin and food coloring. 

Given the widespread occurrence and production of carcinogenic contaminants in human 

nutrition, prevention of further food contamination must be a national health policy priority in 

every country and formal risk assessments should be routinely completed by governmental 

and international agencies. Two important complementary programs exist that classify 
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whether exposures pose a carcinogenic risk to humans. Firstly, The U.S. National Toxicology 

Program (NTP) produces the Report on Carcinogens (NTP, 2002), currently in its eleventh 

edition. Secondly, the International Agency for Research on Cancer (IARC) produces IARC 

Monographs on the Evaluation of Carcinogenic Risks to Humans (http://monographs.iarc.fr). 

Numerous national programs in different countries also provide valuable information 

regarding the carcinogenicity of different agents in humans, much of which are used in the 

IARC and NTP evaluations. 

 

The metabolic versatility of the diverse human intestinal microbiota is increasingly 

understood to act in concert with human metabolic systems to transform a range of dietary 

compounds, including phytochemicals, drugs and xenobiotic compounds (Macfarlane and 

Macfarlane, 2007). Some of these metabolic processes lead to the detoxification of potentially 

carcinogenic compounds, for example the direct binding of HCAs by lactic acid bacteria 

(Bolognani et al., 1997; Zsivkovitz et al., 2003). Others have been shown to produce more 

toxic derivates, not only by the direct conversion of xenobiotics, but also by the 

deconjugation of excreted phase II metabolites in the intestinal lumen (Humblot et al., 2007). 

Important future research perspectives are the fate of food contaminants in the gastro-

intestinal tract and how the interrelationship with food matrices may affect their 

bioavailability. Interactions of food xenobiotics with macromolecular food components may 

reduce their release from food matrices and subsequent intestinal absorption, but may increase 

the fraction that reaches the colon intact and comes into contact with the resident microbiota. 

Clarification of the microbial-ecological mechanisms that influence the release and 

bioactivation/detoxification of food contaminants to hazardous metabolites is therefore 

required.  

 

3.2. Integrated approach for studying microbial transformation processes 

The growing awareness of the relationship between nutrition, food contaminants and 

human health and the involvement of the intestinal microbiota points out the significance of 

conducting research in the field of human nutrition, gastrointestinal microbiology and health 

relevant microbial transformation processes. A range of in vitro and in vivo models of the 

human gastrointestinal microbiota may be applied to study the interaction between diet, food 

contaminants and the gut bacteria. In vitro systems range from simple anaerobic batch 

cultures to multistage continuous culture models using human feces as inoculum. Several in 
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vitro models of the human gut have been developed with varying degree of complexity 

(Molly et al., 1993; Minekus et al., 1999). For instance, the TIM model focuses mainly on the 

small intestine, using dialysis through semi-permeable membranes to simulate intestinal 

absorption, but puts less emphasis on long-term culturing of the gut microbiota (Minekus et 

al., 1999). In contrast, the SHIME allows long-term evaluation of the interaction between 

food components and the intestinal microbial community (Possemiers et al., 2004). There are 

a number of reasons one would carry out such experiments in vitro rather than in vivo. First, 

the in vitro culture system allows to determine the conversion capabilities of the gut 

microbiota with easy access to the metabolic end products, while such end products may be 

absorbed in vivo and remain undetected in feces. Similarly, in vitro culture systems employ a 

human inoculum, which is important considering the significant compositional and metabolic 

differences between the gut microbiota of humans compared to animal models. Finally, in 

vitro culture systems offer a cost-effective experimental tool for looking at the microbial 

conversion of food contaminants that are often only available in small quantities, and not in 

the quantities necessary to carry out meaningful animal or human feeding studies. 

 

Yet, the outcome of in vitro studies needs to be validated in vivo with animal models 

and human studies. Gnotobiotic technologies, including ex-germ-free animals colonized with 

human intestinal microbiota, overcome some of the limitations of the in vitro systems, in that 

they also include a mammalian input towards metabolic conversions and absorption of end 

products. The health implications of microbial transformations may be more readily measured 

because of the availability of mucosal samples from different regions of the gut and the 

possibility of post-mortem examination of tissues for specific pathologies. Such studies have 

been central to identify the intestinal microbiota as key players in the conversion of the 

heterocyclic amines IQ and PhIP (Kassie et al., 2001; Hollnagel et al., 2002). However, they 

are expensive and studies on the fate of food contaminants in existing food products can 

proceed from initial in vitro screenings directly to human feeding studies.  

 

Recent advances in the fields of microbial ecology, analytical chemistry and nutritional 

molecular biology may further revolutionize the way we can study interactions between diet, 

human metabolism (including metabolic activities of our resident microbiota) and disease 

susceptibility. Molecular fingerprinting and quantification techniques such as PCR-DGGE, 

real-time PCR and flow cytometry now allow the microbiologist to capture species diversity 



Chapter 7 

 170 

and visualize population fluxes within the complex gut microbiota in a manner never possible 

with traditional culture based techniques (Eckburg et al., 2005; Blaut and Clavel, 2007). 

Application of high-resolution analytical techniques (e.g. LC-MS/MS and NMR) may help to 

elucidate the microbial transformation processes and increase the understanding of 

toxicokinetics. Moreover, combining in vitro digestion technology such as the SHIME with 

the culture of various cell types opens up an additional field of research. Combination with 

mucus secreting HT-29 cells would allow investigation of bacterial adhesion to the intestinal 

cell wall in relation to specific microbial transformation processes (Hwang et al., 2005). 

Similarly, combination with Caco-2 cells would allow the study of intestinal transport 

processes (Schutte et al., 2008; Vasiluk et al., 2008) and a screening of the biological activity 

of microbial metabolites, as was performed for PhIP-M1 in Chapter 5. Finally, combination 

with metabolically competent hepatocytes such as Hep-G2 cells (Hongo et al., 2005) would 

allow the incorporation of a mammalian input towards metabolic conversions. By that 

approach the bacterial deconjugation of the enterohepatic circulated fraction of a contaminant, 

which is currently neglected, could be taken into account in future microbial metabolism 

studies.  

 

Integrating in vitro gastrointestinal digestion technology and cell cultures of 

hepatocytes, enterocytes and colonocytes for measuring microbe-host interactions allows to 

carry out mechanistic investigations. These will allow for a better interpretation and 

extrapolation of results to the in vivo situation. In this way, a combination of in vitro 

technology with in vivo studies will provide a better knowledge of the underlying mechanisms 

behind the potentially adverse health effects of microbial transformation products of 

nutritional constituents and food contaminants. 
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Cancer is a major disease burden worldwide that accounts in countries with a Western 

lifestyle for 20% of the mortality rate. Epidemiological evidence suggests that diet makes a 

substantial contribution to the burden of human cancer. It is the consumption of meat, and in 

particular red meat, that has shown the strongest association with human neoplastic disease, 

particularly tumors of the colon and rectum. Cooking of meat is known to generate a family 

of promutagenic/procarcinogenic compounds, including the heterocyclic aromatic amine class 

of chemical compounds. Of the 19 heterocyclic amines identified so far, 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP) is frequently the most mass abundant heterocyclic 

amine produced during the cooking of beef, pork and chicken. The human intake of PhIP 

varies with food type and cooking conditions and is estimated to range from nanograms to 

tens of micrograms per day, depending on individual dietary and cooking preferences. 

Assessment studies based on rodent tumor data and the abundance of PhIP in the diet have 

indicated that this heterocyclic amine may be a risk factor in human colon, breast and prostate 

carcinogenesis; which co-incidentally are the three most common sites of diet-associated 

cancer in the Western world. 

 

As a means of determining the potential health risks associated with heterocyclic 

amines, several dietary studies have been conducted on the metabolism and disposition of 

these compounds in humans. So far, most investigations focused on the activation and 

detoxification of heterocyclic amines by mammalian phase I and II enzymes. In common with 

other aromatic amines, PhIP is metabolically activated by N-oxidation of the exocyclic amino 

group, a reaction mediated mainly by the cytochrome P450 isoenzyme CYP1A2. On the other 

hand, the involvement of the intestinal microbiota in the digestive fate of heterocyclic amines 

remains poorly investigated. Recent research has however shown that the amount of PhIP 

metabolites excreted in the urine of humans following ingestion of PhIP in a meat matrix is 

significantly lower than that of patients administered PhIP in a capsule. This indicates that 

PhIP provided in capsule form is more bioavailable than PhIP ingested from meat. The non-

bioavailable fraction reaches the colon and becomes available for biotransformation by the 

colonic bacteria. At the start of this research only a few, partly conflicting results from studies 

with lactobacilli and intestinal microorganisms were available. Indications exist that the 

intestinal microbiota are essential to the induction of DNA damage by PhIP in HFA rats. 

Information on the bacterial metabolism of native heterocyclic amines is however scarce and 

limited to some studies on the quinoline type heterocyclic amines. Therefore, the main 
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objective of this work was to explore the possible role of the human intestinal microbiota in 

the metabolism and biological activity of PhIP. To do this, an integrated in vitro-in vivo 

approach was followed, combining fecal incubations, human studies and mammalian cell 

lines. 

 

In the first part of this research, the microbial metabolism of PhIP was investigated. A 

preliminar explorative study in which PhIP was anaerobically incubated with stools freshly 

collected from six healthy volunteers demonstrated that PhIP was extensively transformed by 

the human intestinal bacteria. HPLC analysis revealed that the human fecal microbiota 

converted PhIP specifically into one major derivative. ESI-MS/MS, HRMS, 1D (1H, 13C, 

DEPT) and 2D (gCOSY, gTOCSY, gHMBC, gHSQC) NMR and IC analysis elucidated the 

complete chemical identity of the microbial PhIP metabolite, as 7-hydroxy-5-methyl-3-

phenyl-6,7,8,9-tetrahydropyrido[3′,2′:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1).  

To evaluate whether this newly identified microbial PhIP metabolite could be produced 

by the intestinal bacteria in vivo as well, a human intervention trial was set up. Six human 

subjects were fed 150 g of cooked chicken containing 0.88-4.7 µg PhIP, and urine and feces 

collections were obtained during 72 h after the meal. PhIP-M1 and its trideuterated derivate 

were synthesized and a rapid and accurate solid-phase extraction LC-ESI-MS/MS method for 

the simultaneous quantification of PhIP and PhIP-M1 in human urine and feces was 

developed. Of the ingested PhIP dose, volunteers excreted 12-21% as PhIP and 1.2-15% as 

PhIP-M1 in urine, and 26-42% as PhIP and 0.9-11% as PhIP-M1 in feces. The rate of PhIP-

M1 excretion varied among the subjects. Yet, an increase in urinary excretion was observed 

for successive time increments, whereas for PhIP the majority was excreted in the first 24 h. 

These findings confirmed that the human intestinal bacteria significantly contribute to the 

overall metabolism and disposition of PhIP in vivo.  

After the observation that PhIP could be metabolically converted by the human 

intestinal bacteria in vitro and in vivo, the next step was to identify and characterize the 

bacterial species responsible for this process. Two PhIP transforming strains PhIP-M1-a and 

PhIP-M1-b were isolated from human feces and identified by a combination of microscopy, 

PCR-DGGE, FAFLPTM and pheS sequence analyses as Enterococcus faecium. Some strains 

from culture collections belonging to the species Enterococcus durans, Enterococcus avium, 

Enterococcus faecium and Lactobacillus reuteri were also able to perform this 

transformation. Glycerol was identified as a fecal matrix constituent required for PhIP 
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conversion. Abiotic synthesis of PhIP-M1 and quantification of the glycerol metabolite 3-

hydroxypropopionaldehyde (3-HPA) confirmed that the anaerobic fermentation of glycerol 

via 3-HPA is the critical bacterial transformation process responsible for the formation of 

PhIP-M1. Although several lactobacilli, as well as other bacterial species have been shown to 

use glycerol as an external electron acceptor, we are the first to relate bacterial species of the 

genus Enterococcus to this anaerobic pathway of glycerol dissimilation. In addition, we have 

shown that PhIP-M1 production occurs under proteolytic conditions. This was true for mixed 

fecal microbiota as well as for the Enterococcus faecium PhIP-M1-a transforming strain. 

The production of PhIP-M1 was shown to be dependent on interindividual differences. 

A first explorative experiment with six human fecal samples demonstrated this factor. 

Subsequent fecal incubations with eighteen human microbiota confirmed that individuals 

could be separated into low, moderate and high PhIP-M1 producers with transformation 

efficiencies ranging from 1.8 to 96%. Finally, significant differences in intestinal PhIP-M1 

production were found to determine differences in urinary and fecal PhIP-M1 excretion in 

vivo in humans. This indicated that interindividual differences in microbial composition and 

metabolism may at least be equally important than differential expression and genetic 

polymorphisms in phase I and II endogenous enzymes, which have been considered so far as 

the obvious candidates responsible for individual variability in PhIP metabolism, 

bioavailability and carcinogenicity.  

 

In the second part of this doctoral research, the impact of the intestinal microbiota on 

the biological activity of PhIP was evaluated. Since ligation of the biliary duct has been 

shown not to alter the genotoxic potential of PhIP, the deconjugation of reactive glucuronides 

by bacterial β-glucuronidase is most likely not to alter the metabolic fate and bioactivity of 

PhIP. Therefore, it was very much conceivable that the microbial formation of PhIP-M1 

contributed to the final genotoxic and carcinogenic activity of PhIP.  

Firstly, it was observed that PhIP-M1, as analyzed using the Salmonella typhimurium 

strains TA98, TA100 and TA102, yielded no significant mutagenic response. Subsequently, it 

was assessed whether PhIP-M1 could exert any cytotoxic or genotoxic effects towards a 

human intestinal cell line. PhIP-M1 was shown to induce DNA damage, cell cycle arrest, 

apoptosis and eventually cell death and growth inhibition towards the epithelial Caco-2 cell 

line. DNA damage in Caco-2 cells was detected using the Comet assay. This assay is 

recognized as a sensitive tool widely used for the evaluation of primary DNA damages at the 
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individual cell level, while the bacterial Ames assay only detects mutagenic effects if the 

DNA damage induced remained after cell division. The conversion of PhIP into PhIP-M1 was 

therefore considered as a microbial bioactivation. As the genomic and cellular events of 

CYP1A2-activated PhIP in different in vitro cell systems are not significantly higher than 

those observed for PhIP-M1 in our test system, the physiological relevance of this newly 

identified microbial PhIP derivate in PhIP carcinogenicity may not be neglected. 

Finally, it was investigated whether addition of native chicory inulin could inhibit the 

extent of microbial PhIP bioactivation. Inulin is generally considered to exert prebiotic effects 

as it stimulates health-promoting bacteria in the human gut such as bifidobacteria. However, it 

is also hypothesized that it may exert chemopreventive effects by the indirect suppression of 

microbial groups such as enterococci that are responsible for the hazardous conversion of 

carcinogenic compounds such as PhIP. In addition, inulin is known to bring about prebiotic 

effects at the level of the metabolic activity, resulting in a saccharolytic fermentation pattern 

and acidic environment. Supplementation of inulin during several weeks to a full-scale 

SHIME reactor showed significant inhibitory effects towards PhIP bioactivation, in particular 

in the transverse colon compartment. Interestingly, the strongest decrease in proteolytic end 

products was also observed in this region of the colon, indicating an indirect relationship with 

the chemopreventive effects from inulin. As the typical proteolytic conditions in the distal 

parts of the colon are normally more detrimental to the host in vivo, in particular in the light 

of the microbial PhIP bioactivation process, these positive modifications in the metabolism 

and microbial community indicate that inulin is a promising chemopreventive agent.  
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Kanker is een belangrijk en mondiaal gezondheidsprobleem dat in landen met een 

Westerse levenswijze verantwoordelijk is voor 20% van het sterftecijfer. Epidemiologische 

studies hebben uitgewezen dat de voeding een substantiële bijdrage levert tot het risico op het 

ontstaan van kanker bij de mens. Het is de consumptie van vlees, en in het bijzonder rood 

vlees die de sterkste correlatie vertoont met het voorkomen van neoplastische ziektebeelden 

en voornamelijk colon- en rectumtumoren bij de mens. Heterocyclische aromatische amines, 

een familie promutagene/procarcinogene componenten, die gevormd worden tijdens het 

bakken, braden of grillen van vlees en vis, blijken geassocieerd te zijn met de etiologie van 

kanker bij de mens. Van de 19 reeds geïdentificeerde heterocyclische amines, is 2-amino-1-

methyl-6-fenylimidazo[4,5-b]pyridine (PhIP) het meest voorkomende heterocyclische amine 

geproduceerd tijdens de bereiding van kip, varkensvlees en rund. Schattingen van de 

dagelijkse inname van PhIP variëren van enkele nanogrammen tot tientallen microgrammen 

per persoon per dag en zijn afhankelijk van de individuele eetgewoonten en bereidingswijze 

van het vlees. Bij knaagdieren is PhIP verantwoordelijk voor de inductie van tumoren ter 

hoogte van de colon, de melkklieren en de prostaat en dit terwijl de overige heterocyclische 

amines eerder ter hoogte van de lever actief zijn. Deze site-specificiteit is intrigerend 

aangezien voornoemde organen eveneens de primaire sites zijn van dieetgeassocieerde 

kankers in de Westerse wereld.  

 

Teneinde de mogelijke gezondheidsrisico’s gerelateerd met de consumptie van 

heterocyclische amines te kunnen inschatten, werden reeds verschillende dieetstudies 

uitgevoerd met betrekking tot het metabolisme en de distributie van deze componenten in het 

menselijk lichaam. Tot op heden richtte het wetenschappelijk onderzoek zich voornamelijk op 

de bioactivatie en detoxificatie door menselijke fase I en II enzymsystemen. Heterocyclische 

amines en in het bijzonder PhIP worden geactiveerd tot mutagene/carcinogene derivaten door 

N-oxidatie van de exocyclische aminegroep. Deze reactie wordt gekatalyseerd door het 

cytochroom P450 isoenzyme CYP1A2. Slechts een aantal, deels tegenstrijdige gegevens zijn 

beschikbaar over de rol van de intestinale microbiota in de biobeschikbaarheid en activiteit van 

deze componenten. Recent in vivo onderzoek toonde aan dat de fractie aan urinaire PhIP 

metabolieten significant lager is bij mensen die PhIP innemen in een vleesmatrix dan wanneer 

deze in capsulevorm wordt toegediend. Dit betekent dat PhIP in capsulevorm meer 

biobeschikbaar is dan PhIP in een vleesmatrix. Deze niet-biobeschikbare fractie bereikt de 

colon onveranderd en treedt er in contact met de intestinale microbiota. Indicaties zijn 
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voorhanden dat de intestinale microbiota een cruciale rol spelen in de inductie van DNA 

beschadiging door PhIP in ratten, geassocieerd met humane darmbacteriën. Onderzoek naar 

het microbieel metabolisme van heterocyclische amines is echter schaars en beperkt zich tot 

enkele studies over de heterocyclische chinoline verbindingen. De belangrijkste doelstelling 

van dit werk bestond er dan ook in om de kennis omtrent het metabolisch potentieel van de 

intestinale microbiota in de bioactivatie/detoxificatie van het heterocyclische aromatische 

amine PhIP te verruimen. Daartoe werd in vitro en in vivo onderzoek geïntegreerd door 

combinatie van batch incubaties, humane studies en cellijntesten. 

 

Tijdens het eerste deel van dit doctoraat werd het microbieel metabolisme van PhIP 

nader onderzocht. Een exploratieve studie waarbij PhIP anaëroob geïncubeerd werd met het 

fecaal materiaal van zes gezonde vrijwilligers leidde tot de vaststelling dat PhIP extensief 

gemetaboliseerd wordt door de intestinale microbiota. HPLC analyse toonde dat de zes 

humane fecale microbiota PhIP specifiek transformeerden tot één metaboliet. Met behulp van 

ESI-MS/MS, HRMS, 1D (1H, 13C, DEPT) en 2D (gCOSY, gTOCSY, gHMBC, gHSQC) 

NMR en IC analyse werd de volledige chemische structuur van het microbiële PhIP derivaat 

geïdentificeerd als 7-hydroxy-5-methyl-3-fenyl-6,7,8,9-tetrahydropyrido[3',2':4,5]imidazo-

[1,2-a]pyrimidin-5-ium chloride (PhIP-M1). 

Om de mogelijke in vivo productie van dit nieuw geïdentificeerde microbiële PhIP 

derivaat na te gaan, werd een humane interventiestudie opgezet. Daartoe werd aan zes 

vrijwilligers 150 g goed doorbakken kip toegediend en de urine en fecale stalen gedurende 72 

u na de maaltijd opgevangen. PhIP-M1 en zijn gedeutereerde derivaat werden gesynthetiseerd 

en een snelle en nauwkeurige vaste fase extractie LC-ESI-MS/MS methode werd ontwikkeld 

voor de simultane kwantificatie van PhIP en PhIP-M1 in urine en feces. De vrijwilligers 

excreteerden 12-21% als PhIP en 1.2-15% al PhIP-M1 in urine en 26-42% als PhIP en 0.9-

11% als PhIP-M1 in feces. De snelheid waaraan PhIP-M1 werd uitgescheiden, varieerde sterk 

tussen de proefpersonen onderling. Toch werd voor PhIP-M1 een toename in urinaire excretie 

waargenomen in functie van de tijd, terwijl voor PhIP het merendeel gedurende de eerste 24 h 

werd uitgescheiden. Deze bevindingen ondersteunden de hypothese dat ook in vivo de 

humane intestinale microbiota een significante bijdrage leveren tot het metabolisme en de 

distributie van PhIP. 

Na de observatie dat PhIP zowel in vitro als in vivo gebiotransformeerd wordt door de 

humane colonmicrobiota, bestond een volgende stap erin om de bacteriële species 
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verantwoordelijk voor dit proces te identificeren en karakteriseren. Twee PhIP-

transformerende stammen PhIP-M1-a en PhIP-M1-b werden geïsoleerd uit humane feces en 

geïdentificeerd door een combinatie van microscopie, PCR-DGGE, FAFLPTM en pheS 

sequentie analyse als Enterococcus faecium. Enkele stammen afkomstig van cultuurcollecties 

behorende tot de species Enterococcus durans, Enterococcus avium, Enterococcus faecium en 

Lactobacillus reuteri waren eveneens in staat om deze omzetting uit te voeren. Glycerol werd 

geïdentificeerd als de noodzakelijke fecale matrix constituent verreist voor PhIP conversie. 

Abiotische synthese van PhIP-M1 en kwantificatie van de glycerol metaboliet 3-

hydroxypropionaldehyde (3-HPA) bevestigden dat de anaërobe fermentatie van glycerol via 

3-HPA het cruciale bacteriële transformatieproces is noodzakelijk voor de vorming van PhIP-

M1. Ondanks het feit dat verschillende lactobacilli, evenals een aantal andere bacteriële 

species in staat zijn glycerol als externe elektron acceptor te gebruiken, is dit de eerste maal 

dat bacteriële species van het genus Enterococcus gerelateerd worden met de anaërobe 

glycerol dissimilatie. Daarnaast werd tevens aangetoond dat microbiële PhIP-M1 vorming 

enkel plaatsvindt in aanwezigheid van eiwitrijke voeding. 

Tenslotte werd ook vastgesteld dat de productie van PhIP-M1 door de darmbacteriën 

gekarakteriseerd wordt door interindividuele verschillen. Een eerste exploratieve studie met 

zes humane fecale stalen toonde dit aan. Daarop volgende fecale incubaties met 18 humane 

inocula bevestigden dat individuen kunnen opgedeeld worden in zwakke, matige en sterke 

PhIP-M1 producenten met transformatie-efficiënties reikend van 1.8 tot 96%. Vervolgens 

werd aangetoond dat significante verschillen in intestinale PhIP-M1 productie tevens 

aanleiding geeft tot verschillen in urinaire en fecale PhIP-M1 excretie. Dit wijst erop dat 

interindividuele verschillen in de samenstelling en metabolische activiteit van de intestinale 

microbiota op zijn minst even belangrijk zijn dan differentiële expressie en genetische 

polymorfismen in fase I en II endogene enzymen, die tot op heden werden beschouwd als de 

voornaamste oorzaak voor individuele variabiliteit in PhIP metabolisme, biobeschikbaarheid 

en carcinogeniciteit. 

 

In het tweede deel van dit doctoraal onderzoek, werd de impact van de intestinale 

microbiota op de biologische activiteit van PhIP geëvalueerd. Aangezien reeds aangetoond 

werd dat afklemmen van de galleider geen invloed uitoefent op de genotoxische activiteit van 

PhIP, is het waarschijnlijk dat de deconjugatie van reactieve glucuronide PhIP derivaten door 

bacterieel β-glucuronidase geen rol speelt in het metabolisme en de biologische activiteit van 
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PhIP. Daarom leek het aanneembaar dat de microbiële vorming van PhIP-M1 bijdraagt tot de 

finale genotoxische en carcinogene activiteit van PhIP.  

Met behulp van de Ames test werd waargenomen dat PhIP-M1 geen mutagene respons 

veroorzaakt bij de Salmonella typhimurium TA98, TA100 en TA102 stammen. Vervolgens, 

werd nagegaan of PhIP-M1 mogelijks cyto- of genotoxische effecten kon uitoefenen ter 

hoogte van het intestinale epithelium. PhIP-M1 bleek DNA beschadiging, celcyclus arrest, 

apoptose en uiteindelijk celdood en groei-inhibitie teweeg te brengen ten opzichte van de 

intestinale Caco-2 cellijn. DNA beschadiging in Caco-2 cellen werd gedetecteerd met behulp 

van de komeettest. Deze test wordt beschouwd als een gevoelige techniek voor de evaluatie 

van primaire DNA beschadiging op het individuele celniveau, terwijl de Ames test enkel 

mutagene effecten detecteert wanneer de DNA schade behouden blijft na celdeling. De 

conversie van PhIP tot PhIP-M1 wordt daarom beschouwd als een microbiële bioactivatie. 

Aangezien de genetische en moleculaire effecten van CYP1A2 geactiveerde PhIP in 

verschillende in vitro celsystemen niet significant hoger zijn dan deze geobserveerd voor 

PhIP-M1 in ons testsysteem, dient de fysiologische relevantie van dit nieuw geïdentificeerde 

PhIP derivaat in de carcinogeniciteit van PhIP benadrukt te worden. 

Tenslotte werd onderzocht of toediening van inuline de microbiële PhIP bioactivatie 

kon inhiberen. Inuline wordt algemeen beschouwd als een prebioticum en dit door het 

stimuleren van gezondheidsbevorderende bacteriën in de menselijke darm zoals 

bifidobacteria. Er wordt echter ook gesteld dat inuline een chemopreventieve werking heeft 

door de indirecte onderdrukking van microbiële groepen zoals de enterococci die 

verantwoordelijk zijn voor de schadelijke omzetting van carcinogene componenten zoals 

PhIP. Bovendien is het geweten dat inuline prebiotische effecten uitoefent op het niveau van 

de metabolische activiteit, resulterend in een saccharolytisch fermentatiepatroon en een zuur 

milieu. Toevoegen van inuline gedurende een aantal weken aan de SHIME reactor gaf 

aanleiding tot een significant inhiberend effect naar de PhIP bioactivatie, in het bijzonder in 

de colon transversum. Een interessante vaststelling hierbij was dat de sterkste afname in 

proteolytische eindproducten tevens in deze regio van de colon werden waargenomen, wat 

wijst op een indirect verband met de chemopreventieve effecten van inuline. Aangezien de 

typische proteolytische condities in de distale coloncompartimenten als meer schadelijk voor 

de gastheer worden aanzien, in het bijzonder in het kader van de microbiële PhIP bioactivatie, 

wijzen deze positieve modificaties in het metabolisme en de microbiële gemeenschap erop dat 

inuline een veelbelovend chemopreventief agens is. 
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1999-2004: Engineer in Environmental Technology, Faculty of Bioscience Engineering, 

Ghent University. Graduated with great distinction.  

 
2003-2004 : Master thesis at the department of Biochemical and Microbial Technology,  

Laboratory of Microbial Ecology and Technology (LabMET) titled: ‘Risks 

from biotransformation of persistent organic pollutants by intestinal 

microbiota’. 

 

Professional Activities 
 
2004-2008:  Doctoral fellowship for PhD research granted by the Institute for the 

Promotion of Innovation by Science and Technology in Flanders (IWT) at 

the department of Biochemical and Microbial Technology,  Laboratory of 

Microbial Ecology and Technology (LabMET) titled: ‘Impact of the human 

intestinal microbiota on the carcinogenicity of the food contaminant 2-

amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP)’. 

 
2004-2008:  Tutor of 4 Master students in Bioscience Engineering. 
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2004-2006:  Supervisor of practical exercises of the course ‘Microbial Ecological 

Processes’ at the Faculty of Bioscience Engineering.  

 
15-16 nov 2004: Organizer and collaborator of the ‘Soil Bioremediation course’ at the 

Laboratory of Microbial Ecology and Technology.  

 
2005-2008: Coordinator and collaborator of research projects in analytical chemistry, 

functional foods and environmental risk assessment commissioned by 

Janssen Pharmaceutica, Energetica Natura, Cosucra, European Space 

Agency and Institut Meurice. 

 
2005-2007: Responsible for the HPLC and preparative HPLC-MS systems.  

 
15-17 sept 2005: Laboratory stay: Northern Ireland Centre for Diet and Health (NICHE), 

University of Ulster, Coleraine, UK. 

 
june-oct 2007: Research at the Laboratory of Genetic Toxicology (Prof. dr. Daniel Marzin), 

Pasteur Institute of Lille, Lille Cedex, France. 

 

Publications 
 

Peer reviewed as first or co-author 

Van de Wiele T., Vanhaecke, L., Boeckaert, C., Peru K., Headley, J., Verstraete W., Siciliano 

S. (2005). Human colon microbiota transform polycyclic aromatic hydrocarbons to 

estrogenic metabolites. Environ. Health Persp. 113: 6-10. 

 
Vanhaecke, L., Van Hoof, N., Van Brabandt, W., Soenen, B., Heyerick, A., De Kimpe, N., De 

Keukeleire, D., Verstraete, W., Van de Wiele, T. (2006). Metabolism of the food-

associated carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human 

intestinal microbiota. J. Agric. Food Chem. 54: 3454-3461. 
 
Vanhaecke, L., Knize, M.G., Noppe, H., De Brabander, H., Verstraete, W., Van de Wiele, T. 

(2008). Intestinal bacteria metabolize the dietary carcinogen 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine following consumption of a single cooked chicken meal in 

humans. Food Chem. Toxicol. 46: 140-148. 



Curriculum vitae 

 209 

Vanhaecke, L., Vercruysse, F., Boon, N., Verstraete, W., Cleenwerck, I., De Wachter, M., De 

Vos, P., Van de Wiele, T. (2008). Isolation and characterisation of human intestinal 

bacteria, capable of transforming the dietary carcinogen 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine (PhIP). Appl. Environ. Microbiol. 74: 1469-1477. 

 
Pham, T.H., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, L., De 

Maeyer, K., Hofte, M., Verstraete, W., Rabaey, K. (2008). Metabolites produced by 

Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. 

Appl. Microbiol. Biotechnol. 77: 1119-1129. 

 
Vanhaecke, L., Derycke, L., Le Curieux, F., Lust, S., Marzin, D., Verstraete, W., Bracke, M. 

(2008). The microbial PhIP metabolite 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-

tetrahydropyrido[3′,2′:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1) induces 

DNA damage, apoptosis and cell cycle arrest towards Caco-2 cells. Toxicol. Lett. 178: 

61-69. 

 

Submitted 

Vanhaecke, L., Grootaert, C., Verstraete W., Van de Wiele, T. (2008). Chemopreventive 

effects from prebiotic inulin towards microbial 2-amino-1-methyl-6-phenylimidazo[4,5-

b]pyridine (PhIP) bioactivation. J. Appl. Microbiol. Submitted. 

 
Sabirova, J.S., Vanhaecke, L., Forrez, I., Verstraete, W., Boon, N. (2008). Manganese-

oxidizing bacteria mediate the degradation of 17-β-ethinylestradiol. Microb. Biotechnol. 

Submitted. 
 

Without peer review and proceedings 

Van de Wiele, T.R., Vanhaecke, L., Boeckaert, C., Verstraete, W., Siciliano, S. (2004). Oral 

exposure to PAH: Bioactivation processes in the human gut. In: Proceedings European 

Symposium on Environmental Biotechnology, Oostende. 

 
Vanhaecke, L., Verstraete, W. (2008). Kun je kanker krijgen als je teveel gerookt voedsel eet? 

In: Kanker: weg met de vooroordelen. Stichting tegen kanker.  
 

 



Curriculum vitae 

 210 

Abstracts 

Vanhaecke, L., Van Hoof, N., Verstraete, W. (2005). Metabolism of the food associated 

carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human intestinal 

microbiota. In: Abstracts of the 9th International Conference on Environmental 

Mutagens & 36th Annual Meeting of the Environmental Mutagen Society, San 

Francisco, California, USA. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 577S1: e242. 

 
Vanhaecke, L., Verstraete W., Van de Wiele, T. (2005). Chemopreventive activity of prebiotic 

chicory inulin and Lactobacillus amylovorus towards bioactivation of polycyclic 

aromatic hydrocarbons by the intestinal microbiota. In: Abstracts Understanding the 

Role of Probiotics in Health, International Yakult Symposium, Ghent, Belgium. 

 
Vanhaecke, L., Knize, M.G., De Brabander, H., Verstraete W., Van de Wiele, T. (2006). 

Intestinal bacteria detoxify the dietary carcinogen 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine in vitro and in vivo. In: Abstracts Darmendag, 

Groningen, The Netherlands.  
 

Vanhaecke, L., Knize, M.G., Noppe, H., De Brabander, H., Verstraete W., Van de Wiele, T. 

(2006). Urinary and fecal excretion of the dietary mutagen 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine and its intestinal microbial detoxification product as 

measured by LC-MS/MS. In: Abstracts New Methods in (Geno)Toxicology and 

Ecotoxicology, Joint Meeting of The Belgian Society for Toxicology and 

Ecotoxicology & The Belgian Environmental Mutagen Society, Leuven, Belgium.  

 
Van de Wiele, T., Vanhaecke, L., Jacobs, H., Verstraete, W. (2006). Inulin and Lactobacillus 

amylovorus supplemented to human gut microbiota lower the microbial bioactivation of 

dietary aromatic contaminants to estrogenic metabolites. In: Abstracts Gut 

Microbiology, Research to Improve Health, Immune Response and Nutrition, 

Aberdeen, Scotland. 

 
Vanhaecke, L., Van de Wiele, T., Verstraete, W. (2006). Metabolism of the food-associated 

carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human intestinal 

microbiota. In: Abstracts Gut Microbiology, Research to Improve Health, Immune 

Response and Nutrition, Aberdeen, Scotland. 
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Vanhaecke, L., Knize, M.G., Derycke, L., Le Curieux, F., Bracke, M., Verstraete, W. (2007). 

Intestinal bacteria play a crucial role in the carcinogenic risk from 2-amino-1-methyl-6-

phenylimidazo[4,5-b]pyridine. In: Abstracts from the Environmental Mutagen Society 

38th Annual Meeting, Atlanta, Georgia, USA. Environ. Mol. Mutagen. 48: 560-560. 

 
Forrez, I., Pauwels, B., Vanhaecke, L., Carballa, M., Sabirova, J., Boon, N., Verstraete, W. 

(2008). Process technical oriented aspects of biological removal of 17a-ethinylestradiol 

in an aerated fixed bed reactor. In: Abstracts International Water Congress, 

International Water Association, Vienna, Austria. 

 

Conferences, workshops, seminars 

 
Active participation 

Global Issues in Genetic Toxicology and Environmental Mutagenesis, 9th International 

Conference on Environmental Mutagens & 36th Annual Meeting of the Environmental 

Mutagen Society, San Francisco, California, USA, September 2005. Poster 

presentation. 

 
Understanding the Role of probiotics in Health, International Yakult Symposium, Ghent, 

Belgium, October  2005. Poster presentation. 

 
1th Intern Networking Event Food2Know, Ghent, Belgium, December 2005. Poster 

presentation. 

 
Environmental Contaminants Workshop, Platform for Scientific Concertation: Food safety, 

Liège, Belgium, April 2006. Poster presentation.  
 
Gut Microbiology, Research to Improve Health, Immune Response and Nutrition, Aberdeen, 

Scotland, June 2006. Lecture: ‘Metabolism of the food associated carcinogen 2-amino-

1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) by human intestinal microbiota’ and 

poster presentation. 

 
8th Annual Gut Day, Groningen, The Netherlands, November 2006. Poster presentation. 
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New Methods in (Geno)Toxicology and Ecotoxicology, Joint Meeting of The Belgian Society 

for Toxicology and Ecotoxicology & The Belgian Environmental Mutagen Society, 

Leuven, Belgium, December 2006. Poster presentation. 
 
Mutational and Epigenetic Mechanisms of Susceptibility and Risks for Genetic Diseases, 

Environmental Mutagen Society 38th Annual Meeting, Atlanta, Georgia, USA, 

September 2007. Lecture: ‘Intestinal bacteria play a crucial role in the carcinogenic risk 

from 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine’ and poster presentation. 

 

Passive participation 

17th Forum for Applied Biotechnology (FAB), Ghent, Belgium, September 2003. 

 
FEVIA Workshop PRO-, PRE- AND SYNBIOTICS, Affligem, Belgium, March 2005. 

 
Bacteria and processes in the GUT: in vitro and in vivo, mini-symposium Max Planck 

Institute, Germany, October 2005. 
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“Even an end has a start.” Na het schrijven van mijn volledige doctoraat, ben ik aanbeland aan 

wat voor mij toch het moeilijkste deel van dit werk blijkt te zijn. Niet het hoofd maar het hart 

dat spreekt. Een doctoraat is een opeenvolgen van vallen en opstaan, vreugde en 

ontgoochelingen, een lach en een traan en wie mij goed kent, weet dat ik dikwijls in extremen 

opereer en dit dan ook letterlijk kan geïnterpreteerd worden. En nu is het moment gekomen 

dat ik alle mensen, die mij hebben gesteund, opgevangen, in mindere of meerdere mate 

hebben bijgedragen tot dit werk of er gewoon geweest zijn, hun welverdiende dank betuig. 

 

Vooreerst zou ik mijn promotor, professor Verstraete, willen bedanken om mij de vrijheid, de 

kansen en mogelijkheden te bieden het onderzoekspad te bewandelen dat ik verkoos. Uw 

wetenschappelijk optimisme en figuurlijke schouderklopjes vormden de perfecte motivatie 

voor mij om dit werk tot een goed einde te brengen. 

 

Onderzoek naar de relatie tussen darmbacteriën, vleescontaminanten en kanker was vrijwel 

ongezien op LabMET. Daarom heb ik mijn grenzen een beetje moeten verleggen en zowat 

iedere faculteit van de Universiteit Gent en nog enkele daarbuiten aangedaan om uiteindelijk 

dit werk te kunnen neerleggen. Daar hebben mij telkens andere mensen, even enthousiast en 

even hulpvaardig opgevangen. Willem en Prof. De Kimpe, bedankt voor de hulp bij de eerste 

zoektocht naar die onmogelijke metaboliet. Arne, Bram en Prof. De Keukeleire voor het op 

bijzonder efficiënte wijze vervolledigen hiervan. Herlinde, Prof. De Brabander en de vrouwen 

van het Labo Chemische Analyse te Merelbeke, bedankt voor de eeuwig vriendelijke 

ontvangst en om mij de wonderen van de LC-MS/MS te leren kennen. Lara, Sofie, Prof. 

Bracke, dank u om mij op korte tijd door de wereld van de cellijntesten te lozen. In het 

bijzonder Lara, om in hoogzwangere toestand (en ik weet nu hoe het voelt) mij ieder moment 

bij te staan en te hulp te schieten. Ook al heb ik mijn auto (leve de UGent verzekering werk-

werk verkeer) in de prak gereden bij één van mijn vele UZ bezoekjes, het was een verrijkende 

ervaring op alle vlak. Frank, Prof. Marzin, Fabrice, Anne et Smail, travailler à L’Institut 

Pasteur n’était pas seulement une magnifique expérience scientifique, mais aussi un 

enrichissement personnel et une excellente opportunité pour améliorer mon français.  

 

I would also like to thank Prof. S. Knasmüller, Dr. F. Le Curieux, Dr. H. Jacobs, Prof. M. 

Bracke and Dr. B. Vanhoecke, Prof. C. Janssen, Prof. N. Boon, Prof. J. Van Camp and Prof. 

N. De Kimpe for their willingness to evaluate this work and to reside in the Examination 

Committee. 
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Mijn thuisbasis bleef natuurlijk steeds LabMET. Daar heb ik het genoegen gekend om op 

professioneel, maar in het bijzonder ook op persoonlijk vlak, heel wat mensen te leren 

kennen. Tom, dankjewel om mij in te leiden in het gastro-intestinale onderzoek en mij steeds 

de nodige moed te geven om verder te gaan. Nico, bedankt voor de moleculaire sturing en het 

redden van doctorandi in nood op faculteitsraden. Birger, Filip en Rosemarie (dit werk is ook 

jullie werk), bedankt voor de inzet, het enthousiasme en de goede samenwerking. Een 

speciaal woordje van dank voor het secretariaat (Kris, Régine, Véronique en Annelies) en 

Jeroen om al mijn (en die van gans LabMET inclus) administratieve en ook andere problemen 

op te lossen. Ellen VG, Petra, Els en Rita, dankjewel voor de praktische hulp en de fijne 

babbels. Verder heb ik veel goede herinneringen aan volgende collega’s uit vroegere tijden: 

Kristof, Wendy, Hilde, Klara, Dirk, Han, Ann, Bram, Karel, Birgit en amuzeer ik me nog 

steeds met Peter A., Lieven W., Roselien, Liesje DS en niet te vergeten de “dames” van de 

SHIME cluster met in het bijzonder Charlotte B., Charlotte G., Ellen E. en Selin. 

Een bijzondere vermelding gaat naar de mede-bewoners van de rotonde: Ilse, Peter, Siegfried, 

Tom, Bart, Lois en part-time, maar daarom niet minder enthousiast, Willem en Selin. Als de 

kleine pruts een vrolijke baby wordt, dan zal dat mede door jullie zijn. Ik zal jullie missen. 

 

Aan Hanna en Marc, Ilse en Maxime, Joke en Nicolas, Bram, Jan en Karel. Maar ook aan 

Nico en Katrijn, Vicky, Katrien, Caroline, Sofie, Hans, Siegfried en Alex. Aan alle SASK-

girls en in bijzonder Eveline. Voor de nodige ontspanning, de glaasjes teveel of te weinig, de 

muziek, het vertrouwen, gewoon er te zijn, bedankt lieve vrienden. 

 

Mijn laatste woord van dank gaat naar mijn familie en schoonfamilie. In de eerste plaats mijn 

ouders, van wie ik zoveel heb meegekregen, waarvan het materiële slechts een fractie is. 

Mama en papa, bedankt om mij ondanks mijn (stress)gevoeligheid en impulsiviteit altijd bij te 

staan. Zonder jullie zou dit nooit gelukt zijn. Delphine, zusje, voor het gekibbel en geschater, 

het begrip en de humor, dankjewel! Rita en Michel, 7 jaar geleden heb ik het plezier gekend 

jullie zoon te mogen ontmoeten en als kers op de taart er twee fantastische schoonouders bij 

gekregen. Dankje voor de fijne gesprekken, de altijd helpende handen en om ons 

onvoorwaardelijk te steunen.  
 

En tot slot, Bruno, liefje, geen woorden zijn rijk genoeg om jou te bedanken, in alles en voor 

altijd ben jij mijn eerste, mijn laatste, mijn mooiste couplet.  
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