P1974-04

POLYNUCLEAR COMPLEX FORMATION BETWEEN LEAD(II) AND 2-MERCAPTOETHANOL AND 3-MERCAPTO-1,2-PROPANEDIOL

H. F. DE BRABANDER, J. J. TOMBEUX and L. C. VAN POUCKE

Department of General and Inorganic Chemistry, University of Ghent, Belgium

(Received May 2, 1974)

The complex formation between Pb(II) and 2-mercaptoethanol (MEL) and 3-mercapto-1,2-propanediol (MPD) was studied by a pH-metrical method at 25° C and in $0.5 M \, \text{KNO}_3$. The system Pb(II)/MEL can be represented by the formation of five complexes: B_3A_5 , B_2A , B_3A_4 , B_2A_2 and B_2A_3 . The last two complexes are present only in a small amount. In the system Pb(II)/MPD the same predominant polynuclear complexes, are found, together with some mononuclear species BA, BA_2 and BA_3 . The composition and the stability constants of the complexes were determined with the aid of a computerprogram PNUC.

INTRODUCTION

The Pb(II) complexes of 2-mercaptoethanol (MEL) and 3-mercapto-1,2-propanediol (MPD) have hitherto not been investigated. Complexes of lead with some other, mercapto group containing, ligands are reported. LI and MANNING¹ determined $\log \beta_{1,1}$ for the reaction of Pb(II) with thioglycolic acid, 2-aminoethanethiol and cysteine as respectively 8.5, 11.1 and 12.20. As communicated in previous reports²-⁴: Ni(II), Zn(II) and Cd(II) form polynuclear complexes will MEL and MPD.

form polynuclear species with these ligands.

EXPERIMENTAL

Reagents

A stock solution of lead nitrate (Baker) was standardized gravimetrically as PbCrO₄.⁵ Solutions of both ligands were prepared as indicated in a previous paper.² All solutions were made up to an ionic strength of 0.5 with potassium nitrate.

Apparatus

The titration procedure of metalion complexes with thiols has been described before.^{2,3} Five different total concentrations of metalion are used: 0.016 M, 0.008 M, 0.004 M, 0.002 M and 0.001 M. The total ligand concentration was as usual² five times the

Pb(II) ion concentration. A digital Radiometer pH M 52, equipped with a glass electrode, type C, and a saturated calomelelectrode, was used for measuring pH values. The electrodes were standardized against a 0.01 M borax buffer according to Bates.⁶ A temperature of 25°C \pm 0.1°C was maintained.

The calculations were performed with a number of computer-programmes, written in Fortran IV. The programmes were executed on a SIEMENS 4004/150 computer.

SYMBOLS

As recommended by the IUPAC commission⁷ the symbols used in this work are listed below.

B: total concentration of Pb(II) ion.
b: concentration of free Pb(II) ion.

A : total ligand concentration.a : concentration of free ligand.

 $h_i a$: concentration of protanated ligand $H_i A$.

h : activity of the hydrogen ion.

 K_{Hi} : mixed protonation constant of the ligand H_iA , defined as $K_{Hi} = h_ia/(h \cdot h_{i-1}a)$.

N : maximum number of hydrogen ions that

the ligand can take up.

C_{base}: concentration of base added.

: average number of ligand bound per Pb(II) ion.

 $B(A_tB)_n$: core + links representation of a complex.

t : number of ligands in a link.

n: variable integer: number of links in a "core + links" complex.

in a verage number of links in a "core + links" complex.

 $\beta_{q,p}$: overall stability constant for a complex $B_q A_p$, defined as $\beta_{q,p} = [(B_q A_p)/b^q \cdot a_p]$.

 $\log F = \log (B/b).$

 $u = a^t b.$ v = Z/t.

 $x = t \log a + \log B.$

RESULTS

The logarithms of the protanation constants K_{H1} for MEL and MPD were determined previously as 9.49 and 9.43 respectively.² As mentioned before⁴ the formation function $Z(\log a)_B$ can be calculated with a computer programme ZPAF using Eqs. (1) and (2)

$$a = \frac{N \cdot A - C_{\text{base}} - (H^{\uparrow}) + (OH^{-})}{\sum\limits_{n=1}^{N} n \cdot h^{n} \cdot \prod\limits_{i=1}^{n} K_{Hi}}$$
(1)

$$Z = A - a(1 + \sum_{n=1}^{N} h^n \cdot \prod_{i=1}^{n} K_{Hi})/B$$
 (2)

The values of h were obtained pH-metrically.

The constant and unknown shift of our pH-values due to our method of standardization, will not affect the Z and a values since our protonation

constants are obtained in the same way. For determination of the concentration of hydrogen ions (H⁺) a proportionality factor, reported by Goeminne⁸ was used. The term (OH⁻) could be neglected since the pH never exceeds 9.

In Figure 1 the formation function of the system Pb^{2+}/MEL is shown. As can be seen on this figure the formation curves are not completely equidistant. At low and high values of Z, deviations are observed. By plotting $\log B$ versus $-\log a$, an average value of 2.5 was obtained for t. All complexes should be represented by the formula $B(A_{2.5}B)_n$. the y-x curve calculated with this t value is shown in Figure $\frac{1}{2} \frac{1}{L} \frac{1$

These values are given in Table I. As can be seen from this table \bar{n} varies between one and two. Since in the complex $B_q A_p$ p and q must be integer values

TABLE I
The average number of links in function of y

\overline{y}	\overline{n}	\overline{y}	\overline{n}
0.03	1.091	0.580	1.477
0.16	0.928	0.595	1.499
0.325	1.035	0.610	1.583
0.46	1.185	0.620	1.646
0.50	1.231	0.630	1.714
0.53	1.282	0.645	1.824
0.55	1.321	0.665	1.989

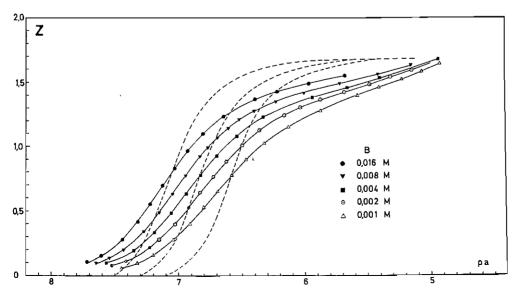


FIGURE 1 The formation curves of the system lead(II) and 2-mercaptoethanol. In dotted lines: theoretical curves for a complex B_3A_5 (B = 0.016; 0.004; 0.001).

only the complex B_3A_5 could be present in solution.

This is in contradiction with Sillén's theory. Indeed: a single complex always defines a "core + links" series and the observed formation curves should be perfectly equidistant. The shape of the formation curves for a single complex B_qA_p is only determined by the p and q value and a change in stability constant results in a shift along the pa axis. With the aid of a computer programme ALTH the theoretical formation curves or a complex B_3A_5 were calculated and plotted. They are shown in dotted lines in Figure 1. It was found that the theoretical an experimental curves have a different shape. The

theoretical curves are much steeper than the experimental ones. At intermediate Z values the spacing of experimental and theoretical curves is in agreement with each other. From this we can conclude that, together with a predominant complex B_3A_5 , other species must be present. All the complexes present in solution are not related to each other as in a "core + links" series.

In order to determine the amount, composition and stability constants of the complexes a computer programme PNUC was designed. This programme is based on the ideas of Sillén, expressed in his programme LETAGROP.¹⁰, ¹¹

The stability constants of a set complexes $B_q A_p$ are determined by minimization of the "square-error sum" U, given by Eq. (3).

$$U = \Sigma (Z_{\text{exp}} - Z_{\text{calc}})^2$$
 (3)

 Z_{calc} is the experimentally obtained value of the formation function. Z_{calc} is calculated from a, B, and estimated values of $\beta_{a,p}$ by means of Eq. 4.

$$Z_{\text{calc}} = \frac{\sum_{q} \sum_{p} P \beta_{qp} b^{q} a^{p}}{B}$$
 (4)

Since b is unknown, this value is calculated from Eq. (5).

$$B - b - \sum_{q} \sum_{p} q \beta_{qp} b^q a^p = 0 \tag{5}$$

 $U_{\rm MIN}$, the minimum value of U, is found with a minimization subroutine based on the "variable metric method" from Davidon.¹² At this minimum the standard deviation $\sigma^2(Z)$ is given by:

$$\sigma^2(Z) = U_{\text{MIN}}/(n_{\text{exp}} - n_{\text{par}}) \tag{6}$$

 n_{exp} is the number of experimental points and n_{par} is the number of stability constants.

The search for the amount and the composition of the complexes is based on the following principles. If all combinations of all possible complexes will be treated in the previous way, the set of present complexes, called the "best" set, will give the lowest $U_{\rm MIN}$ and $\sigma^2(Z)$ value. In this work the following strategy was chosen. Since B_3A_5 is predominant, complexes with q=2, 3 and 4 will be probable. For a combination of each of this complexes with B_3A_5 the function U was minimized. The complex is accepted if the U value is lower than $U_{\rm MIN}$, obtained with a single complex B_3A_5 . Complexes are rejected if the U value is not lowered or if their contribution to the formation function is small. This contribution, $\alpha_{a,P}$, is given by Eq. (7):

$$\alpha_{q, p} = \frac{q\beta_{qp}b^{\dot{q}}a^{p}}{B} \tag{7}$$

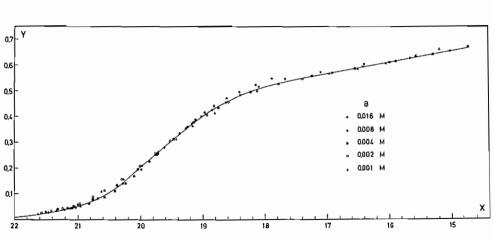


FIGURE 2 The y-x curves of the system lead(II) and 2-mercaptoethanol.

Nine complexes were accepted. The total set was minimized in the same way. The results are given in Table II.

TABLE II

complex	$\log \beta_{q,p}$	$\alpha_{q,p}$ MAX	present
B_3A_5	38.496	82	+
$B_{2}A_{1}$	9.071	33	+
B,A	15.769	9	±?
$B_{2}A_{3}$	22.037	8	±?
B_3A_3	17.287	2	_
B_3A_3	24.361	2	
B_3A_4	32.740	69	+
$B_{\mathbf{A}}A_{\mathbf{A}}$	26.708	3	
B_4A_5	41.012	5	

 $\alpha_{q,p}$ MAX is the maximum value of $\alpha_{q,p}$, given in percent, for a complex B_qA_p in the set of experimental points. From this table it can be seen that three complexes must be accepted, two complexes are possible and the four others are probably absent. The model formed by the complexes B_3A_5 , B_2A and B_3A_4 will be a good representation for the system Pb²⁺/MEL. In order to improve this model the other complexes were successively added to it and U was

minimized again. The results are given in Table III. It was found that the complexes B_2A_2 and B_2A_3 , did improve the minimum for a small amount. So, the with *marked model in Table III is the best representation for the system Pb²⁺/MEL.

The complexes formed between Pb²⁺ and MPD were determined in the same way. In Figure 3 the formation curves for this system are shown. As these complexes are more soluble the formation curves can be obtained over a wider concentration range. The cross-over point found is a strong indication for a mixture between polynuclear and mononuclear complexes.^{9,13} The results obtained with the prograft PNUC are given in Table IV.

DISCUSSION

between 2-mercaptoethanol (MEL) and Pb(II): B_3A_5 , B_2A , B_3A_4 , B_2A_2 and B_2A_3 . With 3-mercapto-1, 2-propanediol (MPD), Pb(II) forms the polynuclear complexes B_3A_5 , B_2A , B_3A_4 and the mononuclear species BA, BA_2 and BA_3 . With MEL precipitation of yellow crystals occurred at Z=1.6 and no mononuclear species could be detected.

As seen above the following complexes are formed

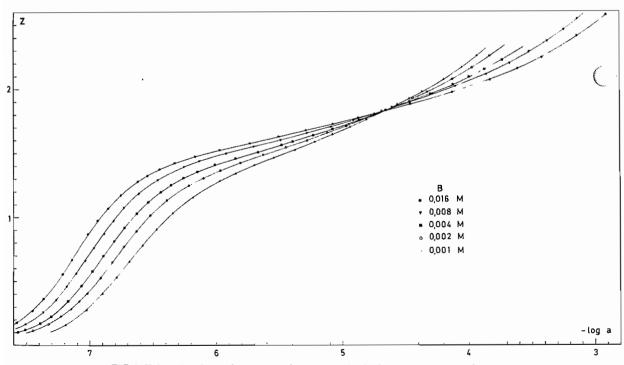


FIGURE 3 The formation curves of the system lead(II) and 3-mercapto-1,2-propanediol.

TABLE III

model	$\log \beta_{q,p}$	$\alpha_{q,p}$ MAX	present	$U_{ exttt{MIN}}$	$\sigma^2(Z)$
B_3A_5	38.484	85	+	0.8449 10 -1	0.162 10 -2
B_2A_1	9.066	36	+		
B_3A_4	32.780	78	+		
B_3A_5	38.513	88	+	0.7798 10 -1	0.153 10-2
B_2A_1	8.925	28	+		
B_3A_4	36.692	70	+		
B_2A_2	15.771	12	+		
B_3A_5	38.500*	84	+	0.7583 10 -1	0.152 10-2
B_2A_1	8.937	28	+	**********	
B_3A_4	32.654	66	+		
B_2A_2	15.769	11	+		
$B_2 A_3$	22.034	9	+		
B_3A_5	38.495	88	+	0.7951 10 -1	0.159 10-2
B_2A_1	8.874	25	+		01107 10
B_3A_4	32.685	70	+		
B_2A_2	15.745	11	+		
B_3A_2	17.274	3			
B_3A_5	38.493	88	+	0.8090 10 -1	0.162 10-2
B_2A_1	8.877	26	+		
B_3A_4	32.673	70	+		
B_2A_2	15.743	11	+		
B_3A_3	24.359	2			
B_3A_5	38.494	88	+	0.8069 10 -1	0.161 10 -2
B_2A_1	8.874	25	+		
B_2A_4	32.683	70	+		
B_2A_2	15.745	11	+		
B_4A_3	26.707	4	_		
B_3A_5	38.492	88	+	0.8322 10-1	0.166 10-2
B_2A_1	8.886	26	+		
B_3A_4	32.659	66	+		
B_2A_2	15.744	11	+		
$\vec{B}_4\vec{A}_5$	41.008	6			

The complexes found cannot be classified under a "core + links" series $B(A_1B)_n$. Concerning this aspect the Pb²⁺ complexes are an exception in the series of metal ions studied with these ligand hitherto. Indeed, the Zn²⁺ complexes³ can be represented by a "core + links" system $B(A_3B)_n$ with $n_{\text{max}} = 5$. Ni²⁺ forms² with MEL and MPD complexes $B(A_2B)_n$ with n great. Cd²⁺ was found⁴ to form polymeric complexes $B(A_5B_3)_n$.

Proposing a structure for the Pb²⁺ complexes would be no more than a speculation. The coordina-

TABLE IV

complex	$\log \beta_{q,p}$	complex	$\log \beta_{q,p}$
B_3A_5	38.088	BA	6.634
B_2A_1	7.87	BA_{2}	12.495
B_3A_4	32.415	BA_{3}	15.901

tion number of Pb^{2+} is sometimes called a chemical camelion and indications are found that the s electrons sometimes get a p character. A direct Pb-Pb bound seems not to be impossible.

Other investigations of the complexation of Pb²⁺ with sulfur containing ligands will be necessary for a better knowledge of the (Pb-S) bound.

ACKNOWLEDGEMENT

The authors are grateful to Prof. Dr. Z. Eeckhaut for his kind interest and helpful discussions.

REFERENCES

- N. C. Li and R. A. Manning, J. Amer. Chem. Soc., 77, 5225 (1955).
- H. F. De Brabander, L. C. Poucke and Z. Eeckhaut, Inorg. Chim. Acta, 6, 459-462 (1972).

- 3. H. F. De Brabander, L. C. Poucke and Z. Eeckhaut, Inorg. Chim. Acta, 5, 473-476 (1971). 4. H. F. De Brabander and L. C. Van Poucke, J. Coord.
- Chem., in press. 5. A. I. Vogel, A Text Book of Quantitative Inorganic
 - Analysis, Longmans, Green and Co., London.

8. A. M. Goeminne and Z. Eeckhaut, Bull. Soc. Chem.

- 6. R. G. Bates, Determination of pH, p. 76, Wiley, New
- York. 7. Y. Marcus, Pure Appl. Chem., 18, 457-64 (1969).

Belges, 80, 605-10 (1971).

- 9. L. C. Van Poucke, and H. F. De Brabander, Talanta, 20. 733-738 (1973).
 - 10. L. G. Sillén, Acta. Chem. Scand., 16, 159-72 (1962). 11. N. Ingri and L. G. Sillén, Acta, Chem. Scand., 16.
 - 173~91 (1962). 12. W. C. Davidon, ANL-5990 Physics and Mathematics AEC
 - Research and Development Report (1966) Argonne National Laboratory.
 - 13. L. C. Van Poucke and H. F. De Brabander, Talanta, 21, 279-86 (1974)