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A visual classification technique based on the construction of convex
hull houndaries in combination with a principal component analysis
is described. This combined technique was evaluated in the situation
in which a distinction has to be made between 2 pure animal fat
classes and the corresponding mixture class. In the first instance, a
principal component analysis is carried out to ensure the 2-dimen-
sional and thus visual aspect of the technique. Convex hulls are then
constructed in the 2-dimensional principal component plane to de-
limit the boundaries of the different classes to be defined. The ef-
fectiveness of the constructed hull boundaries in the definition of
class-membership was investigated by means of the classification of
different simulated test samples. The resulis show that, at least for
the tested applications, the technique is valid, although some false
positive classifications occur. The detection of outliers especially
seemed to pose problems. Therefore, some propositions are made of
how to refine the developed hull technique to enhance the classifi-
cation resuits.

The estimation of food adulteration may often pose serious
problems in food quality control. Entire or partial substitu-
tions of the original product with an allied product of (mostly)
inferior and cheaper quality are sometimes difficult to detect.
A first necessity in trying to solve this substitution problem
is to verify whether the 2 kinds or classes of products, i.e.,
the original products on the one hand and the adulterant on
the other hand, can be distinguished in an efficient way and
whether mixtures of these 2 products can also be recognized.
The solution of this problem is 2-fold. In the first instance,
one has to select and analyze those parameters that are sup-
posed to discriminate the 2 possible classes. In a second step,
it will be necessary to apply multivariate mathematical tech-
niques to define class characteristics on the basis of the de-
termined parameter. Those class characteristics in turn will
allow us to define class-membership of unknown samples.

The scope of this article is restricted to the description and
evaluation of a possible mathematical way of solving the
“substitution” or “mixture” problem in the supposition that
the necessary analytical measurements have already been
carried out and discriminating data are available. The tech-
nique in question makes use of the construction of 2-dimen-
sional convex hull boundaries for the delimitation of the
different classes or, in other words, for the definition of class
characteristics. In comparison to other techniques that might
be used for solving the same problem, emphasis should be
put on the graphical and thus visual aspect of this convex
hull technique.

With supervised learning techniques such as, for instance,
SIMCA (1) and UNEQ (2), 1t is possible to develop separate
mathematical models for each of the classes to be defined
(i.e., the 2 pure classes and the mixture classes) and to defing
class-membership by fitting each test object to each of the
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developed models. Linear discriminant analysis (LDA) (3)
creates linear boundaries to distinguish different possible
classes; objects are classified according to their position with
respect to those boundaries. Factor analytical techniques such
as target transformation factor analysis, which is used, among
others, to assign the influence of different emission sources
in a pollution pattern {(4) or pariial least squares (5) might
be more precise. However, in all applications of multivariate
mathematical techniques, one starts by representing the data
visually, i.e., in 2 dimensions, using techniques such as prin-
cipal components analysis. This is necessary because one
likes to have a visual idea of the shape of the developed class-
models, the position of the different classes in relation to
each other and of test objects in relation to the different
classes, the presence of outliers, the homogeneity of the classes,
etc. We reasoned that since this technique is used anyway,
it would be useful to enhance it by including the possibility
of classifying pure samples and, more important, distinguish-
ing mixture samples. The convex hull method seemed tous
to be a valid alternative to reach this goal. It was tested on
the detection and classification of adulteration of fat samples
from different animal species. L

Experimental
Dara

A dara set concerning the fatty acid composition of animal
fat samptes of different origin was taken as a starting point
to evaluate the usefulness of the developed hull technique in
the problem of class and mixture class definition. The original
data set was made available by H. De Brabander. It lists the
percent content of 7 fatty acids incorporated at the 2-position
of triacvlglycerol of 21 pork fat samples, 20 hen fat samples,
15 beef fat samples, and 14 horse fat samples. The fatty acids
taken into consideration arc myristic acid (C14:0), palmitic
acid {C16:0), palmitoleic acid (C16:1), stearic acid (C18:0),
oleic acid (CI8:1), linoleic acid (C18:2), and linclenic acid
(C18:3).

The analysis procedure is briefly described as follows: Tri-
acviglycerols are extracted and isolated from meat tissue sam-
ples, or isolated from fat tissue samples by homogenization,
meliing, and filtering. The fatty acid composition in position
2 of the triacylglycerols is determined by (1) the reaction of
pancreatic lipase on the triacylglycerols, (2] the separation of
the reaction products by thin-layer chromatography, (3) the
transesterification of the resulting 2-monoacylglvcerols with
sodium methylate, and /4) the quantitative gas chromato-
graphic analysis of the resulting fatty acids. A more detailed
description of the materials and methodology used for this
fatty acid analysis can be found in ref. 6.

It is known that the fatty acid pattern and the relative
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Figure 1a.

distribution of fatty acids within the triacvlglycerols is 10
some exient species-specific. However, because of differences
in feeding regime and anatomical location of the fat, fatty
acid contenis may also vary within one animal species (6).
Nevertheless, this data set seemed 10 be a suitable working
sample, since it is our intention 1o evaluate 1the usefulness of
the convex hull technique in defining class-membership rath-
er than to determine whether the available data are the most
discriminating in the distinction between the different animal
fat species.

Philosophy of the Applied Hull Technique

Consider the situation where objects or samples known 10
belong to either class A or class B are characterized by their
measurement values for 2 parameters X1 and X 2. Both kinds
of samples can be represented as points in a 2-dimensional
plane defined by the 2 parameters, the coordinates of the
objects being their measurement values for X1 and X2 (Fig-
ure Ia). A possible way of defining class characteristics in
this 2-dimensional situation is to delimit the area around
each of the 2 possible classes by constructing class bound-
aries. Class boundaries can be determined by computing the
convex hull around the cioud of points representing the sam-
ples of a specific class. This procedure corresponds with suc-
cessively connecting the most extreme points of each separate
class with each other {Figure 1b). The convex hulls then serve
as the criterion for the classification of unknown sampies, a
classification that is, however, not probabilistic since the
convex hull technigue can be seen as a nonparametric meth-
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Figure 1b. Determination of class boundaries by construction
of 2-dimensional convex hulls around each class.

Representation of objects of 2 different classes, A and B, in 2-dimensional plane defined by parameters X1 and X2.

od. In fact, class-models may be described in 2 ways, that
is, by parametric or by nonparametric methods.

Parametric techniques, i.e., techniques that define class-
models or class boundaries on the basis of statistical param-
eters derived from the underlying distribution of the class
samples (e.g., UNEQ, LDA | . .}, have the advantage that the
classification of test samples can be expressed in a proba-
bilistic way. Each 1est object can be assigned a certain prob-
ability of belongingness 10 a specific class. A disadvantage is
that the technigues are based on the assumption that the
samples are bi- or multivariate normally distributed. More-
over, LDA also assumes equal within-group variance. These
conditions are certainly not always fulfilled. If the underlying
conditions are not fully satisfied, the classification rules de-
rived from the technique are non-optimal and, consequently,
classification results will not always be reliable. Nonpara-
metric methods, on the contrary, do not make any assump-
tions with regard 1o the underlying distribution of the class
samples, but the disadvaniage of these methods is that the
classification decision is perhaps too “‘clear-cul.” A new sam-
ple 1s assigned to a specific class when it falls inside its class
boundaries (in our case, the convex hull); otherwise it is
considered 1o be an outlier with respect to that class.

Defining the convex hull around a 2-dimensional cloud of
points is the same 2s finding the most extreme points in the
corresponding class of objects. These extreme points form
the vertices of the convex hull. A step-wise procedure for
determining those vertices is summarized hereafter and is
illustrated in Figure 2.

{1) Determine the centroid (c) of the class points. The 2
coordinates of the centroid are calculated as the class mean
of each of the 2 respective parameters (Figure 2a). {2) Find
the class point situated at maximal distance {d,.,) of the
centroid. This point defines the first vertex of the convex
hull (v,) (Figure 2a). (3) Determine the second vertex (v,) by
selecting the class point that forms a maximal angle (8,..,)
with the line that connecis the centroid with the first vertex
{Figure 2b). /4) Define consecutive hull vertices (v, ... v,)
according to the same principle, namely, by selecting the class
point that forms a maximal angle with the line segment that
connects the 2 former vertices (Figure 2¢). (5) Repeat step 4
until the last veriex defined coincides with the first vertex
(v, = v;). The construction of the convex hull around the
cloud of points of a particular class is then completed (Figure
2d).

The procedure for defining class-membership of new sam-
ples with respect to the constructed hull boundaries can also
be described in a step-wise manner (see also Figure 3):
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Figure 2a. Step-wise procedure for construction of convex hulls:
Determination of centroid {¢) and first vertex {v,) by selecting
class point with maximal distance {d_,,) to centroid.

(1) Find the vertex to which the new point {T) is closest
(v.). (2) Determine the “direction” of the new point with
respect 1o the closest vertex. More precisely, verify whether
the new point lies in the wedge defined by vertices v, and
V... If this is the case, set v, equal to v,,,. Otherwise, that
is, if the 1est point lies in the wedge defined by vertices v,
and v,_,, set v, equal to v,_,. (3) Define whether the new
point is (with respect to the line segment connecting vertices
v, and v,) situated toward the centroid or away from it, or,
in other words, whether the new point lies inside the triangle
{c, v, v,} or outside this triangle. When the new point lies
inside this triangle, it is considered to be a member of the
class under consideration. A description of an analogous pro-
cedure for defining convex hulls and for defining convex
inclusion of new objects can be found in ref. 7.

Mixture class boundaries can also be described in terms
of convex hulls. The procedure described hereafter is re-
stricted to the situations where it can be assumed that the
response of a linear combination of material from class A
and from class B is equal to the linear combination of the
responses of the material from both classes. This rules out
situations where the combination of material from 2 classes
interacts synergistically. If there is no interaction between
the material from both classes, it can be stated that the mix-
ture of a samiple (a) from class A with a sample (b) from class
B results in a new sample (¢) with a composition intermediate
1o both original samples. Consequently, on the X1 vs X2
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Fig_ure 2b. Determination of second vertex (v,) by selecting class
Roint that forms maximal angle (0...,) with line that connects
centroid with first vertex.
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Figure 2c. Determination of consecutive vertices (v, .. .} by se-
lecting class point that forms maximal angle (6., - . .) with line
segment that connects the 2 former vertices.

graph, the new mixture sample is situated on the line that
connects both original samples (Figure 4a). This is true for
all mixtures of A-samples with B-samples in every possible
proportion. One observes that each of the possible “mixture
Hnes™ falls within the boundaries of a convex hull constructed
around the total of points, that is, considering the points of
class A and the points of class B as a whole (Figure 4b).
Mixture class boundaries can thus be defined as the convex
hull around the total of points belonging to both pure classes.
The same procedure as described above can be applied to
determine its hull vertices (i.e., the most extreme points) and
to define class-membership.

The area occupied by the mixture class comprises thus the
area occupied by class A, the area occupied by class B, plus
the area between these 2 classes. Hence, since the mixture
class includes both pure classes, it will not always be possible
to distinguish a mixture {adulterated sample) and a pure
sample. For instance, object d in Figure 4a can be a pure
A-sample but it can just as well be 2 mixture sample obtained
by mixing a large proportion of an A-sample with a small
proportion of a B-sample. The distinction between a pure or
a mixed sample is even less obvious as the 2 classes become
more similar (small between-class distance) and as the classes
become strongly heterogeneous (large within-class distance).

Evaluation Procedure

In testing the convex hull technique, we considered the
2-dimensional situation in which a distinction has 1o be made
between 2 “pure” classes and the corresponding mixture class.

th

Figure 2d. Complete convex hull around points of a class.
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Figure 3. Definition of class-membership: T is closest to v, thus
v, = v, T lies in wedge defined by vertices v, (=v.) and v,

(=V....} thus v; = v, T falls outside triangie (c, v,, v¢). Conclusion:
T is outlier.

Stanting from the total data set consisting of 4 different animal
species {classes), every possible combination of 2 classes was
considered. Convex hulls were constructed around each class
(and mixture class) in each possible combination considering,
respectively, the 21 pork, 20 chicken, 15 beef, or {4 horse
fat samples {from the original data set as representative sam-
ples.

Since in the original data set 7 parameters were determined
{i.e., fatty acids incorporaied at the 2-position of the 1riacyl-
glycerols), it was necessary 1o reduce the number of dimen-
sions before calculating the 2-dimensional class boundaries.
We used principal component analysis to do this. Principal
component analysis (PCA) can be seen as a visual dimension
reduction technique with the objective of representing mul-
tidimensional data into a 2-dimensional space without losing
too much of the onginal information residing in the data set.
This goal is achieved by the computation of new variables
(i.e., principal components or PCs) as orthogonal linear com-
binations of the original variables. The principal components
are construcied in such a way that the first one explains more
variation than the second, the second explains more than the
third, etc. The dimension reduction results thus from the fact
that most of the original variation in the data set is retained

x2]
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Figure 4a. Mixture samples {c¢) and (d) are situated on line that
tonnects 2 original samples of which they are composed.
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Figure 4b. Mixture class boundaries are defined as convex hull
around total of points. (All possible mixture lines fall within these
boundaries).

by the first few PCs. Hence, by carrving out a preliminary
PC analysis on each subset of 2 classes, it becomes possible
to represent the 2 classes into a 2-dimensional plane defined
by the first 2 PCs and to construct the convex hulls around
each class considering these 2 PCs as the new dimensions.
New objects that have 10 be classified should then be pro-
jected in the corresponding PC plane.

The choice of PCA as the dimension reduction method is
made somewhat arbitrarily. There is no specific reason for
preferring it above other factorial methods except that it is
the most commonly used and therefore also the best known
and best understood method. For reasons of visualization,
only the first 2 PCs are retained as the basic dimensions for
constructing 2-dimensional convex hulls. However, it should
be mentioned that 2 PCs might not always be sufficient 10
approximate adequately the multidimensional data set. Con-
sequently, classification results derived from convex hulls
constructed in a PC plane that poorly represeats multidi-
mensional reality might be unreliable. Nevertheless, expe-
rience shows that on most occasions the 2 first PCs fairly
approximate the real dispersion among the objects so that
the constructed convex hulls can be considered as reliable
parameters for defining class characteristics.

The method was thus tried in 6 different combinations,
namely, in the definition of the pure and mixed classes of
beef and horse fat, beef and pork fat, beef and chicken fat,
horse and pork fat, horse and chicken fat, and, finally, pork
and chicken fat. For each subset of 2 classes, the effectiveness
of the hull boundaries in the definition of class-membership
was evaluated by means of the classification of test objects
that were generated by simulating— arithmetically —combi-
nations of the genuine animal fat samples of the original data
set. Each test set consists, more precisely, of 4 pure samples,
6 mixture samples, and 4 outliers. Pare samples were sim-
ulated by combining 2 randomly chosen samples of the cor-
responding pure class with each other; mixture samples are
imitated by combining (in different proportions) randomly
chosen samples of each of the 2 pure classes with each other;
whereas the samples that are supposed to be outliers are
arbitrarily chosen among the 2 remaining classes.

Results and Discussion

The graphical reproductions of the different classes, the
constructed convex hulls, and the positions of the test sam-
ples with respect to those hull boundaries are represented in
Figures 5 and 6 for, respectively. the beef-horse classification



THIELEMANS ET AL.:

RES
tie

J. ASSQC. OFF. ANAL. CHEM. (VOL. 72, NO. 1, 1989)

)

pPc2

“ty

Figure 5. Beef-horse classification: 2-dimensional representation (PC1 vs PC2) of constructed convex hulls and position of test
samples toward the hull boundaries. ® = beef samples; O = horse samples; t = test samples.

and the pork-chicken classification. The plots are PC1 vs
PC2 plots. For reasons of classification, 3 different areas were
determined on each of the 2-dimensional PC plots, The first
area 15 defined as the area delimited by the convex hull
boundaries constructed around the first pure class. It should
comprehend all corresponding pure samples and possibly
also some of the mixture samples (for reasons described
above). The second area is defined as the area delimited by
the convex hull around the second pure class, Again, it should
include all corresponding pure samples and possibly some
of the mixture samples. Finally, the third area is defined as
the area comprehended by the convex hull around the com-
plete mixture class minus the area comprehended by both
pure classes. It defines an area in which only mixture samples

should fall. Samples that fall outside these 3 areas are defined
as outliers.

The detailed classification results obtained in each of the
2 abovementioned situations are represented in Tables 1 and
2. A positive sign means that the test object falls inside the
corresponding area, a negative sign indicates that the test
object falls outside it. Test objects that are “wrongly™ clas-
sified are bracketed.

A general description of the results obtained in each of the
6 situations is given below:

Hull boundaries.—In each of the 6 combinations, the 2
pure classes are totally separated from each other. There is
no overlap between the 2 corresponding convex hulls. How-
ever, one observes that in some situations (e.g., pork-chicken

L PC2

"ty
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Figure 6. Pork-chicken classification: 2-dimensional representation (PC1 vs PC2) of constructed convex hulls and position of test
samples toward hull boundaries. @ = pork samples; © = chicken samples; t = test samples.
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Table 1. Areas of classification for beef, horse, and mixtures®

Table 2. Areas of classification for pork, chicken, and mixtures?

Area I: Area Tk Area Il Area | Area i Area il
Test objects® beef class horse class  mixture class Test objects® pork ciass  chicken class mixture Class
T1 = Pure beef + - - T1 = Pure pork + - -
T2 = Pure beef + - - T2 = Pure pork + - -
T3 = Pure horse - + - T3 = Pure chicken - + -
T4 = Pure horse - + - T4 = Pure chicken - + -
T5 = Beef/horse: 1/1 - - + T5 = Pork/chicken: 1/1 - - +
T8 = Beefthorse: 1/1 - - + T6 = Pork/chicken: 1/1 - - +
T7 = Beef/horse: 2/t - - + T7 = Pork/chicken: 2/1 - - +
T8 = Beef/horse: 1/2 - [+1 - T8 = Pork/chicken: 1/2 - - +
T9 = Beei/horse: 3/1 - - + T9 = Pork/chicken: 371 - - +
T10 = Beeffhorse: 1/3 - [+] - T10 = Pork/chicken: 1/3 - - +
T11 = Chicken - - - T11 = Beet - - {+]
T12 = Chicken - - I+} T12 = Beef - - [+]
T13 = Pork - - - T13 = Horse - - -
T14 = Pork - - - T14 = Horse - - -
* + = test object falls inside test area; — = test object falls outside test =t See Table 1.

area; brackets = “wrang™ classification.

s Simulation of mixture samples: Beefihorse:1/3, for example, is mixiure
sample consisting of 256% beef {at and 75% horse fat. It was simulated
(arithmetically) by adding fatty acid percentages of one beef sample and 3
horse samples (randomly chosen among samples of ariginal data set) and
dividing resulting value by 4. Same remark accounts for all other mixture
samples.

{sce Figure 6}), the classes are rather heterogeneous resulting
in convex hulls of an abnormal or stretched-out shape. It can
be expected that with such widely spread hull boundaries,
the classification results will not always be optimal.

Classification results.— (1) In each of the 6 situations, the
4 pure samples are correctly classified into the corresponding
pure class.

(2) Thirty-three of the total 36 simulated mixture samples
can unambiguously be defined as such since they all fall inside
area II1, i.e., the area delimited by the boundaries of the
complete mixiure class minus both pure classes. Three mix-
tures (2 for the beef-horse classification, 1 for the beef-chick-
en classification) are, however, classified into the area of one
of the corresponding pure classes. Since the complete mixture
class cannot totally be distinguished from the pure classes,
this result can be expected, especially for mixtures of pure
samples in unequal proportions and/or for mixtures of ex-
treme pure samples (i.e., samples situated near the class
boundaries). This is the case for the 3 mixture samples that
are classified into a pure class: For instance, the 2 mixture
samples that fall inside the pure horse class consist of a large
proportion of horse fat (see Table 1} and, moreover, the horse
fat samples, of which the mixtures are partly composed, are
situated near the righimost horse class boundaries.

(3) In 5 of the 6 sitnations, one or 2 of the samples that
are supposed to be outliers are found inside the mixture class
boundaries. These wrong classification results might be due
to the fact that the mixture class boundaries are too lberal
and cover 100 large a space (which may happen when the
classes are heterogeneous). Another possibility is that, per-
haps, the starting parameters are not discriminating enough
to make a distinction between more than 2 different animal
fat species and their corresponding mixtures.

In summary, it can be noticed that the developed hull
technique leads to some false positive but no false negative
results, In other words, some test samples are classified inside
specific hull boundaries while in fact they should not be, but
there are no samples that fall outside specific boundaries
when they should be classified inside them. Therefore, it
could be stated that, at least in this application, the method
is probably sensitive but perhaps not selective enough.

Outlier detection especially seems 1o pose a prablem. Pos-
sibly, the method could be improved by incorporating more
sophisticated calculations for solving the abovementioned ~
problem. The calculation of residuals, such as proposed and
incorporated in the SIMCA method (1), seemed 1o us a pos-
sible help in solving the outlier problem. The residuals can
be seen as a measure for the distance of an object toward the
calculated PC plane, If the residuals of an individual object
are found to be too large compared 10 the “mean” residuals
of the global matrix to the PC plane, the object in guestion
can be defined 2s an outlier. Classes would then be 3-di-
mensional: the 2-dimensional convex hull sandwiched be-
tween 2 boundaries in the third dimension, the boundaries
being determined by allowable residuals. Preliminary cal-
culations carried out on this subject prove that, although the
outlier problem is not entirely solved, the evaluation of these
residuals in combination with the 2-dimensional convex hull
technique is certainly worth further investigation.

Conclusion

The research work carried out until now is not complete
since, for instance, the effect of mixture samples composed
of a known animal fat with an unknown animal fat is not
yet investigated. However, it seems clear that the convex hull
technique in combination with a principal component anal-
vsis can be considered as a mathematically simple and easily
interpretable visual classification method giving good results.
It must not be seen as a miracle technigue bringing solutions
to all kinds of problems. We would rather present it as an
easily applicable technigue that can be used besides other
methods but not to the exclusion of other methods.

Certainly, further refinements could be implemented. For
insiance, the construction of ellipses instead of convex hulls
can be seen as an analogous but probabilistic method. Bound-
aries of the corresponding mixture class could then possibly
be defined as the common tangents to the 2 pure elliptical
classes or perhaps the mixture class could be described as an
ellipse of which the foci are the centroids of both pure classes.
Those possibilities, however, have not been investigated. The
technique could also be made more selective by the incor-
poration of supplementary and more sophisticated calcula-
tions for outlier detection. To solve the problem of selec-
tiveness and accuracy, one also could consider the possibility
of constructing convex hulls in more than 2 dimensions, but
then the advantage of mathematical simplicity and visuality
disappears.
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